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1 Introduction

Three undergraduates participated in this project during Winter quarter
2017: Penny Espinoza, Emily Flanagan, and Jesse Rivera. The following
are their reports on their work during this quarter.

2 Progress

2.1 P. Espinoza’s commentary

2.1.1 Analyzing the sequences of differences between terms of a
sequence (A153777)

A153777 is a sequence S such that 1 is in S, and if x is in S, then 5x−1 and
5x+ 1 are in S. Thus, the primary definition of the sequence is generational
in nature, with each generation adding twice as many terms as the previous
generation.

• First generation only: 1

• Add second generation, where 4 = 5 ∗ 1− 1 and 6 = 5 ∗ 1 + 1: 1, 4, 6

• Add third generation, where 19 = 5 ∗ 4 − 1 and 21 = 5 ∗ 4 + 1, and
29 = 5 ∗ 6− 1 and 31 = 5 ∗ 6 + 1: 1, 4, 6, 19, 21, 29, 31
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• Add fourth generation: 1, 4, 6, 19, 21, 29, 31, 94, 96, 104, 106, 144, 146, 154, 156

• . . .

However, one can take another perspective on the sequence by considering
the differences between terms of the sequence. If the first 31 terms of the
sequence, representing the first five generations, are as follows:

1, 4, 6, 19, 21, 29, 31, 94, 96, 104, 106, 144, 146, 154, 156, 469, 471,

479, 481, 519, 521, 529, 531, 719, 721, 729, 731, 769, 771, 779, 781

Then the sequence representing the differences between consecutive terms
of the sequence is shown below:

3, 2, 13, 2, 8, 2, 63, 2, 8, 2, 38, 2, 8, 2, 313, 2, 8, 2, 38, 2, 8, 2, 188, 2, 8, 2, 38, 2, 8, 2

The difference sequence has a definite pattern than can be composed of se-
quences within sequences.

The first sequence, which here will be called A, is defined as A(1) = 2,
and A(n) = 5 ∗ A(n− 1)− 2.

2, 8, 38, 188, . . .

There is then a sequence of sequences B such that B(1) = A(1) and B(n) =
[B(n − 1)A(n)B(n − 1)]. B represents the differences between terms in a
single generation of the main sequence.

[2], [2, 8, 2], [2, 8, 2, 38, 2, 8, 2], [2, 8, 2, 38, 2, 8, 2, 188, 2, 8, 2, 38, 2, 8, 2], . . .

A third sequence C is defined such that C(1) = 3 and C(n) = C(n − 1) +
10 ∗ 5n−2. This sequence represents the gap between generations of the main
sequence.

3, 13, 63, 313, . . .

Finally, the entire difference sequenceD can be defined asD(n) = [C(n)B(n)].

[3, 2], [13, 2, 8, 2], [63, 2, 8, 2, 38, 2, 8, 2], [383, 2, 8, 2, 38, 2, 8, 2, 188, 2, 8, 2, 38, 2, 8, 2], . . .
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2.1.2 Exploring Dirichlet’s Theorem on Primes in Arithmetic Pro-
gression

Dirichlet’s Theorem on Primes in Arithmetic Progression states that if a and
b are relatively prime, there will be an infinite number of primes of the form
an+ b where n is any non-negative integer.

The OEIS contains many sequences that exploit this theorem. Below is
a group of sequences that always uses a = 90, but varies the value of b.

Sequences of integers n such that 90n+ b is prime
b = 1 A181732
b = 19 A196000
b = 37 A198382
b = 47 A201734
b = 73 A195993
b = 83 A196007

An evaluation of the distribution of these sequences reveals that each
sequence has lacks any members in one of the seven mod 7 residue classes:
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Sequence 90n+ 1 has no members congruent to 1 mod 7.
Sequence 90n+ 19 has no members congruent to 5 mod 7.
Sequence 90n+ 37 has no members congruent to 2 mod 7.
Sequence 90n+ 47 has no members congruent to 5 mod 7.
Sequence 90n+ 73 has no members congruent to 3 mod 7.
Sequence 90n+ 83 has no members congruent to 6 mod 7.
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One might wonder why certain residue classes are missing, and how they
are dependent on b. Furthermore, a quantifiable answer to this question
might reveal a way to identify classes of numbers that will never generate
primes. Such an answer is given below.

For any prime p that is not a factor of a, let x be the mod p multiplicative
inverse of a (i.e., ax ≡ 1(mod p)). Then if r ≡ −xb(mod p) and k is any
non-negative integer, any

n = pk + r

will yield no primes in the arithmetic progression an+ b, since a(pk + r) + b
will be divisible by p. (unless when k = 0 and ar + b = p, which is prime)
Note that r is not uniquely specified, but represents a congruence class mod p.
For simplicity in the following example, the lowest possible integer that fits
the criteria is used.

Consider the sequence comprising prime numbers of form 90n+19. Then
a = 90 and b = 19, and since this started with an analysis of residue classes
mod 7, let p = 7. The mod 7 multiplicative inverse of 90 is 6.

90(6) ≡ 1(mod 7)

and r ≡ (6)(−19)(mod7) ≡ 5 (≡ 12 ≡ 19 . . .).
In this case, all terms with n = 7k + 5 have the form

90(7k + 5) + 19 = 630k + 469 = 7(90k + 67)

so are not prime.
A few further questions are suggested by this analysis:

• Does this cover all circumstances where the arithmetic progression does
not result in a prime number?

• It is possible for ar + b = p - consider a = 2, b = 1, p = 3: 2(2) ≡
1(mod 3) and r = 1. Then ar + b = 2(1) + 1 = 3, which is prime. Is it
possible to give a general characterization of such circumstances?

2.2 Emily Flanagan’s Commentary

Of all the sequences I worked with this quarter, the one that I spent the
most time investigating was A001969, or the ”Evil Numbers.” Evil numbers
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are those that have an even number of 1’s in their binary expansion. The
compliment of this sequence, A000069, or numbers with an odd number of
1’s in their binary or base 2 expansion, are called ”Odious Numbers.” The
sounds of these two sequences are almost identical. Below is the spectrogram
of A00069:

For comparative purposes, below is a spectrogram of a similar sequence
to A000069 and A001969. To generate this sequence, we first noticed that
the gaps between numbers included in the sequence was always 0, 1, or 2
with the same break never repeating more than once in a row. The breaks
of 0, 1, and 2 occur with the same frequency, meaning no one break occurs
more frequently than another. Thus, the spectrogram of the sequence below
was created by randomly deciding if the next number in the sequence should
have a gap of 0, 1, or 2.

The spectrogram for the Odious Numbers is obviously more organized and
has specific frequencies that are represented, whereas the randomly generated
sequence’s spectrogram lacks any notion of a solid band. When listening to
these sounds, the randomly generated sequence sounds like pure static. On
the other hand, the Odious and Evil numbers, while static sounding, lack the
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grittyness that the randomly generated sequence has.
Later in the quarter, we decided to extend the definition of an Evil Num-

ber and created what we call ”Bvil Numbers.” Bvil numbers are numbers
such that the sum of their digits in some base b is divisible by the base b.
Our group was then able to prove that the density for bvil numbers in any
base is 1

b
. We did so by proving the following theorem:

Theorem 1. Let k be any integer representing the sum of digits in base b of
some number n. Exactly one of the set {k, k − 1, . . . , k + b− 1} is divisible
by b.

2.3 J. Rivera’s commentary

2.3.1 Beatty Sequences

Definition. Beatty sequences are those defined by {an} = {bnαc} where
α ∈ R \Q. We are interested in those with α > 1.

Sound. Beatty sequences produce sounds with many different frequen-
cies. Each frequency can be heard in a constant tone, with some frequencies
being stronger than others.

Properties Beatty Sequences are interesting for a number of reasons.
The complement of a Beatty sequence is another Beatty sequence {bn} =
{bnβc} where β = α

α−1 (note that this satisfies 1
α

+ 1
β

= 1).

Consequently, for every pair of Beatty sequences with irrational coeffi-
cients α, β > 1 it will always be the case that either α ∈ (1, 2) or β ∈ (1, 2)
but not both.

Theorem 2. For a pair of Beatty sequences with irrational coefficients α, β >
1, exactly one of α, β is less than 2.

Proof. Consider a Beatty sequence {an} with irrational coefficient α, and its
complement (with respect to N) {bn} with irrational coefficient β. It is either
the case that β < 2 or β > 2.
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1. If β < 2 then

β =
α

α− 1
< 2⇔

α < 2(α− 1)⇔
α < 2α− 2⇔
−α < −2⇔
α > 2

2. If β > 2 then

β =
α

α− 1
> 2⇔

α > 2(α− 1)⇔
α > 2α− 2⇔
−α > −2⇔
α < 2

That is, β < 2 =⇒ α > 2 and β > 2 =⇒ α < 2 so it will always be the
case that exactly one of α, β is less than 2 and the other greater than 2.

Since a sequence and its complement produce identical sounds, this means
that the sound of any given Beatty sequence can be generated with an irra-
tional coefficient between 1 and 2.

The first difference of a Beatty sequence will always be constrained to two
values, bαc and bαc+1 (if we consider two sequences to be equivalent if they
produce the same sound, then these two values are 1 and 2). Rather than the
gaps themselves, it is the distribution of these gaps that results in the variety
of frequencies we hear in the sound. The fact that α is irrational ensures that
the resulting sound is not periodic; to add to this, the randomness introduced
by the floor function also contributes to the complexity of the sound.

2.3.2 Sequence A051913

Definition. A positive integer n is in the sequence if and only if ϕ(n)
ϕ(ϕ(n))

= 3
where ϕ is Euler’s totient function.
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Sound. Sequence A051913 has a very unique sound. It begins with a
medium-pitched tone that gradually decreases as the sequence progresses.
The sequence grows more sparse and the sound becomes more noisy with
time. Perhaps the most interesting feature of this sequence is the cyclic
pattern that can be heard throughout the sound. Much like the other features
of the sound, as the sequence progresses this pattern becomes slower and more
drawn out.

Properties. The following are several properties of Euler’s totient func-
tion that are relevant to sequence A051913. While they do not fully explain
the phenomena we hear in the sound, they give us some insight that may
help us better understand the sequence and the sound that it produces.

Theorem 3. ϕ(n) = n
3
⇐⇒ n = 2s3t with s, t ≥ 1

Proof. Suppose n = 2s3t with s, t ≥ 1. Then

ϕ(n) = 2s3t
∏
p|n

(
p− 1

p

)
= 2s3t · 2− 1

2
· 3− 1

3

= 2s3t · 1

3

=
n

3

Now suppose ϕ(n) = n
3
. Then∏

p|n

(
p− 1

p

)
=

1

3

Since each (p − 1) in the numerator is less than the largest p in the
denominator, the largest prime factor of n must be one of the prime factors
of the denominator of the resulting fraction. Then ϕ(n) = n

3
implies that 3 is

largest prime factor of n (since 3 is the only prime factor of the denominator
of 1

3
). In the case where n = 3t we have

ϕ(n) = n
∏
p|n

(
p− 1

p

)
=

2n

3
6= n

3

So we conclude that n must have prime factors 2, 3.
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Corollary 1. If n = 3a with a ≥ 2 then ϕ(n)
ϕ(ϕ(n))

= 3.

Proof. Suppose n = 3a where a ≥ 2. Then

ϕ(n) = 3a
∏
p|n

(
p− 1

p

)

= 3a
(

2

3

)
= 213a−1

a− 1 ≥ 1 so by Theorem 3 we have that ϕ(n)
ϕ(ϕ(n))

= 3.

From this result we see that sequence A051913 has infinitely many terms.

Theorem 4. If n = 2s3tp1 · · · pk with s ≥ 1, t ≥ 2 and where pk are distinct
primes greater than 3 and (pk − 1) is 3-smooth for each k, then ϕ(n)

ϕ(ϕ(n))
= 3.

Proof. Suppose n is of the form described above. Then

ϕ(n) = 2s3tp1 · · · pk
∏
p|n

(
p− 1

p

)

= 2s3tp1 · · · pk ·
(

2− 1

2

)(
3− 1

3

)(
p1 − 1

p1

)
· · ·
(
pk − 1

pk

)
= 2s3t

(
1

2

)(
2

3

)
(p1 − 1) · · · (pk − 1)

= 2s3t−1(p1 − 1) · · · (pk − 1)

Since each (pk− 1) is 3-smooth, this expression can be written as ϕ(n) =
2q3r where q ≥ s and r ≥ t− 1. Then q, r ≥ 1 so by Theorem 3 we have that
ϕ(ϕ(n)) = ϕ(n)

3
, which is equivalent to ϕ(n)

ϕ(ϕ(n))
= 3.

Theorem 5. If ϕ(n)
ϕ(ϕ(n))

= 3 then n is of the form 2a3bp1 · · · pk where a, b ≥ 0

and pk are distinct primes with (pk − 1) 3-smooth for each k.
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Proof. Suppose ϕ(n)
ϕ(ϕ(n))

= 3. Then ϕ(ϕ(n)) = ϕ(n)
3

, so by Theorem 3 ϕ(n) =

2s3t with s, t ≥ 1. That is,

2s3t = n
∏
p|n

(
p− 1

p

)

= n

(
p1 − 1

p1

)
· · ·
(
pk − 1

pk

)
Rearranging this equation we get

n =
2s3tp1 · · · pk

(p1 − 1) · · · (pk − 1)

Writing n as its prime factorization we have

2a3bpe11 · · · p
ek
k =

2s3tp1 · · · pk
(p1 − 1) · · · (pk − 1)

where a, b ≥ 0. For this equality to be true it must be the case that s ≥ a,
t ≥ b, and ek = 1 for each k. Furthermore, (p1 − 1) · · · (pk − 1) must have
prime factorization 2s−a3t−b, implying that each (pk − 1) is 3-smooth.
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