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1 Introduction

1.1 The initial problem

In mathematics, prime gaps (defined as r = p, — p,—1) are widely studied
due to the potential insights they may reveal about the distribution of the
primes, as well as methods they could reveal about obtaining large prime
numbers.

Our research of prime spacings focused on studying prime intervals, which
is defined as p, — pn_1 — 1, where p, is the n'* prime. Specifically, we
looked at what we defined as prime-prime intervals, that is primes having
Pn — Pn_1 — 1 = r where r is prime. We have also researched how often
different values of r show up as prime gaps or prime intervals, and why
this distribution of values of r occurs the way that we have experimentally
observed it to.

1.2 New directions

The idea of studying the primality of prime intervals had not been previously
researched, so there were many directions to take from the initial proposed
problem. We saw multiple areas that needed to be studied: most notably,
the prevalence of prime-prime intervals in the set of all prime intervals, and
the distribution of the values of prime intervals.



2 Progress

2.1 Computational

The first step taken was to see how many prime intervals up to the first n'*
prime were prime. Our original thoughts were that the amount of prime-
prime intervals would grow at a rate of m(w(x)), since the function 7 tells
us how many primes there are up to some number x. However, our findings
suggest that the ratio of prime-intervals that are prime is close to %’/T(LE) up to
~ 100,000,000 and continues to drop as we take the intervals between higher
and higher primes.
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Figure 1: In purple we have 7(x), in blue we have I(x)

The decreasing behavior of this ratio below can be explained by the in-
creasing sparsity of prime numbers as © — oo. Thus the intervals between
them get larger and these larger numbers are less likely to be prime.



Primes up to x (in billions) Proportion of Primes Intervals that are Prime
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2.2 Computations Part 2
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This graph shows when each prime-prime interval up to 199 first shows
up. As we can see, there is somewhat of an order and this makes sense

because as primes get larger, they get farter apart, so the intervals between
them will begin to get larger.



2.3 Theoretical

We developed no mathematical proofs that related to prime-prime intervals.
However, we have hypothesized that there are an infinite number of prime
intervals that are prime. We also have evidence to believe that every prime
shows up as a prime prime interval at least once. Since primes are infinite,
there is a strong possibility that the prime intervals will continue to increase
infinitely as well.

We also looked at when primes up to 199 initially show up as prime intervals.
In doing so, we observed that 199 took an especially long time to appear as a
prime interval, not doing so until approximately 378 million. Although this
could be explained by the fact that 199 was the largest prime we looked at
- thus it would require a larger integer to appear as a prime interval than
other primes which are smaller in magnitude - we were enticed to explore why
this might be, since other primes close in magnitude to 199 took much less
time to appear. To answer our question, with the help of the Bateman-Horn
conjecture, we looked at the density of primes produced by the polynomial
(x)(z + k), where k is a prime gap.
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Figure 2: The Bateman-Horn conjecture. Top: the statement of the conjec-
ture, where P(z) is defined to be the number of primes less than x produced
by some f(x), a polynomial. Bottom: The formula for C', where N (p) denotes
the number of solutions to f(z) =0 mod p.

On the whole, Bateman-Horn conjectured densities of prime gaps were
larger than what we found experimentally, particularly for larger prime gaps.
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Since we have primarily looked at the range of integers up to 430 million when
gathering our experimental data, where the average prime-prime interval is
about 16.8, it is possible that we have too small of a sample size to draw
conclusions with our experimental data for larger prime-prime intervals.

In further researching prime gaps, we came across previous research on
the subject of the frequency of prime gaps. In the paper, entitled Jumping
Champions, Odlyzko, et al. present a heuristic argument in support of the
idea that primorials, or prime gaps whose prime factorizations consist of
distinct consecutive primes (e.g. 30 = 2 % 3 5), appear the most often. In
the paper, Odlyzko, et al. argue that 6 is the most common prime gap until
approximately 1.7427 x 1035,

Noting this idea, we explored how often prime gaps appear using both the
Bateman-Horn conjecture and experimental methods. Using the Bateman-
Horn conjecture, in order to increase the density of primes produced by a
polynomial f(z) = (z)(xz + k), the number of solutions to f(z) mod p for
all primes p must be minimized. One way to do this is for £ to have a prime
factorization consisting of distinct consecutive primes, particularly smaller
primes, since those influence the calculation of the conjectured density the
most. At each prime p that is an element of the factorization of k, (z)(z +k)
will have one solution mod p and two solutions at every other prime. Hence
the more distinct consecutive primes in the factorization of k, the smaller
N(p) will be.

A consequence of this idea would be that prime gaps whose factorizations
skip primes appear less often relative to prime gaps similar in magnitude
that have more consecutive primes in their factorization. For example, 127
(a Mersenne prime) appears less often as a prime interval than other primes
similar in magnitude. Its corresponding gap, 128 = 27, does not have a prime
factorization consisting of distinct consecutive primes. In relation to 199, we
noted that 200 = 23 x 52 has a prime factorization which does not consist of
distinct consecutive primes.

3 Future directions

In the future we would like to develop a hypothetical proportion of prime
prime intervals up to infinity using similar methods to how the twin prime
constant was derived. We would also like to continue gathering evidence for
our hypothesis that each prime appears infinitely often as a prime interval.
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Figure 3: The number of primes up to 1 billion that have an interval of 125,
127, 131 and 137.

Another future goal is to verify the claims of Odlyzko, et al., with regards
to the idea that 30 is the most frequent prime gap after a certain threshold
around 10%°. We would like to further explore previous research on these
related topics.

More specifically, we would like to narrow down the conditions that cause
a prime interval to appear more or less often than other prime intervals.
Although one way to ensure a higher conjectured density for f(z) = (z)(z +
k) is for k to have a prime factorization consisting of distinct consecutive
primes, is there any other way to increase the density of primes produced by
polynomials of this type?
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