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1 Introduction

Throughout the past academic year, our research group has been interested
in the distribution of primes as well as their density. Specifically, we have
been investigating prime intervals. We define a prime interval to be the
number I

I = pn+1 − pn − 1

where pn is the nth prime. We are especially interested in the case when
I is prime, which we denote as a prime-prime interval.

1.1 The initial problem

We wish to approximate the density of prime-prime intervals relative to all
other prime intervals. In doing so, we hope to illuminate patterns in the
distribution of prime numbers.

1.2 New directions

In describing the density of prime-prime intervals, we have encountered road-
blocks in the form of the bias in distribution of consecutive primes. As a
result, we would like to move away from the consecutive case and begin to
look at how often r = p− q − 1 is prime, where p and q are prime.
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Figure 1: Left: Bateman-Horn conjecture, which provides an asymptotic
estimate for how often a given set of polynomials fi(x) is prime. Right:
Formula for C. N(p) denotes the number of solutions to fi(x) mod p where
p is prime.

Figure 2: The Hardy-Littlewood prime k-tuple conjecture, which provides an
analogous estimate to the Bateman-Horn conjecture for the probability that
a prime p and p + m1, p + m2, . . . are also prime. We focused primarily on
the case p and p+m1, where m1 = q + 1 for some prime q.

2 Progress

2.1 Computational

In order to describe the approximate density of prime-prime intervals, we
have utilized the Bateman-Horn conjecture (Figure 1), which reduces to the
famous Hardy-Littlewood prime k-tuple conjecture (Figure 2) for the lin-
ear polynomial case. To compute the density constant C outputted by the
Bateman-Horn conjecture, the prime gap rather than prime interval must
be considered. We define the prime gap G to be the difference between two
consecutive primes, that is:

G = pn+1 − pn

We are most interested in the case where G = q + 1 where q is prime,
since that corresponds to the associated prime-prime interval. (That is, for
a prime-prime interval R = pn+1 − pn − 1, if we add 1 to I we will have the
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Figure 3: Primes R and their corresponding Hardy-Littlewood constants,
with the primes on the horizontal axis. Note clustering at approximately the
horizontal line y ≈ 2.6.

corresponding prime gap G = R + 1.)

In further researching prime gaps, we came across previous research on
the subject of the frequency of prime gaps. In the paper, entitled Jumping
Champions, Odlyzko, et al. present a heuristic argument in support of the
idea that primorials, or prime gaps whose prime factorizations consist of
distinct consecutive primes (e.g. 30 = 2 ∗ 3 ∗ 5), appear the most often. In
the paper, Odlyzko, et al. argue that 6 is the most common prime gap until
approximately 1.7427 ∗ 1035.

Correspondingly, in order to increase the density of primes produced by
a polynomial f(x) = (x)(x+ k), the number of solutions to f(x) mod p for
all primes p must be minimized. One way to do this is for k to have a prime
factorization consisting of distinct consecutive primes, particularly smaller
primes, since those influence the calculation of the conjectured density the
most. At each prime p that is an element of the factorization of k, (x)(x+k)
will have one solution mod p and two solutions at every other prime. Hence
the more distinct consecutive primes in the factorization of k, the smaller
N(p) will be. Noting this idea, for primes R up to 105, we computed the
probability that x and x+R was also prime.
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In the set of data that we generated, we found that the highest Hardy-
Littlewood constant was ≈ 10.242, associated with the prime-prime interval
30029. We note that 30030 = 2∗3∗5∗7∗11∗13. In particular, we note that
there is a clustering of Hardy-Littlewood constants around the horizontal
line y ≈ 2.6: that is, a lot of prime-prime intervals have density constants
around 2.6. In finding a list of the most common density constants, the
number 2.64067318602201 appears 706 times in the list, while the next most
common density constant (5.28134637204403) appears just 179 times. This
distribution could be due to the fact that we are looking at a small sample
up to 105 so there may be a bias towards smaller prime factors.

2.2 Theoretical

The Twin Prime Constant

Let P be the set of all primes. The twin prime constant is defined as the
following infinite product:∏

p∈P

(1− 1

p
)−1(1− 1

p− 1
)

.
To obtain the 1 − 1

p−1 factor, modular arithmetic is used. That is, we use
modular arithmetic to determine the probability p+2 is divisible by a certain
prime given that p is prime.

Consider the following example: Let p be a prime. Then p is 1 or 2 mod 3,
so p + 2 is 3 or 4 mod 3, i.e, p + 2 is 0 or 1 mod 3. So, the probability that
p + 2 is divisible by 3 is 1

2
. So, the probability that p + 2 is not divisible by

3 is 1− 1
2

= 1
3−1

Similarly, p can be 1, 2, 3, or 4 mod 5, so p+2 can be 3, 4, 5, 6 mod 5, i.e., p+2
can be 0, 1, 3, 4 mod 5. Then, the probability that p+ 2 is divisible by 5 is
1
4
, which means the probability that p+2 is not divisible by 5 is 1− 1

4
= 1− 1

p−1

In general, if p and q are prime, and p 6= q then p is 1, 2, 3, ..., q − p,
... q−2, or q−1 mod q. So, p+2 is 3, 4, 5, ..., q, ..., (q−2+p), or (q−1−p)
mod q. That is, the probability that p + 2 is divisible by q is 1

1−q , i.e., the

probability that p is not divisible by q is 1
q−1 .
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Generalizing to Other Prime Gaps

We can use the same logic for p and p+ (r + 1) where p and r are prime.

First consider the following interesting example: Let p be a prime. Then
p is 1 or 2 mod 3, so p + 6 is either 7 or 8 mod 3, i.e., p + 6 is either 1
or 2 mod 3. That is, p + 6 has a 0% chance of being divisible by 6, so the
probability that p+ 6 is not divisible by 6 is 1 - 0 = 1.

In general, if r+1 has q as a prime factor, then the probability that p+(r+1)
is not divisible by q is 1: Let p, q, and r be prime and suppose p 6= q. Suppose
also that r + 1 is of the form q · a for some positive integer a. Then we have
that p is 1, 2, 3, ..., q− p, ... q− 2, or q− 1 mod q, so p+ (r+ 1) = p+ (q · a)
is 1 + (q · a), 2 + (q · a), 3 + (q · a), ..., q − p + (q · a), ... q − 2 + (q · a), or
q − 1 + (q · a) mod q. None of which are multiples of q.

So, the probability that p and p+ (r+ 1) are both prime is dependent on the
prime factorization of r + 1

Estimating the Probability that a Prime Inter-

val is Prime

We know that π(x) ≈ x
log(x)

, so a simple approximation for the probability

that p+ (r+ 1) is prime if p is prime could be x
log2(x)

. Then since p is prime,
p is odd unless it is 2, so p+ 2 is also odd, so we can double this probability.
For the specific case of r + 1 = 2, we use the twin prime constant to obtain
a better approximation of the probability that p and p+ 2 are prime. So, if
r is a prime, then we can approximate the number of prime prime intervals
with the following equation:

x

log2(x)
·
∏
p∈P

(1− 1

p
)−1 ·

∑
p∈P

Cp+1

where Cp+1 is the product over all primes of the probability that if q is prime
q + p+ 1 is not divisible by that prime.
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3 Future directions

We will compare the theoretical conjectured numbers with some of the data
we have gotten to see if we are on the correct track with our ideas.
In short, if we think of the twin prime constant as the base (because every
prime gap will have 2 as a factor because they are all even), we can obtain the
analogous constant for any gap by simply looking at its prime factorization.
That is, if a is a prime gap where a has non-even prime factors p, q, and r
and we let C2 , Ca = C2 ∗ 1

1− 1
p−1

∗ 1
1− 1

q−1

∗ 1
1− 1

r−1

. So, by having a high number

of consecutive prime factors in the prime gap being consider, that maximizes
the number of times that gap will show up.
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