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1 Introduction
The focus of our project is on researching the returns dynamics of leveraged
exchange traded funds (LETFs) and estimating empirical leverage ratios.
Our research team focused on commodity ETFs, all of which track oil in-
dices. First, we calculated and compared daily returns of each ETF and its
reference index. We then modeled the returns as an Ornstein−Uhlenbeck
process and used maximum likelihood estimation to estimate mean-reversion
speed, long-run mean, and volatility parameters. We then fit our data to an
autoregressive – AR(1) – model and used regression to estimate the auto-
correlation parameter. Next, we fit our returns data to a well-known distri-
bution. Lastly, we estimated the empirical leverage ratio of each LETF and
compared these estimates with their theoretical ratios.

1.1 Price Ratio
We first compute daily simple returns of each ETF and reference index and
then compute the price ratio. Let Pt denote the reference index and price of
ETF on day t.

Rindex
t = Pt

Pt−1
− 1

RETF
t = St

St−1
− 1

Ratiot = RETF
t

Rindex
t
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The motivation behind finding the returns ratio for each ETF and its refer-
ence index is that if their prices move proportionately, then the ratio would
fluctuate tightly around the advertised leverage ratio. If the returns ratio
isn’t close to the ideal leverage ratio, then there exists tracking error.

1.2 Issues
The our results showed that the returns ratios centered around the leverage
ratio for each ETF, but there existed large spikes in our time series plots.

Figure 1: Time series of returns ratios for OIL, SCO, and USO ETFS. OIL
tracks the SP GSCI Crude Oil Total Returns index 1:1, while USO and SCO
track the Bloomberg WTI Oil Subindex 1:1 and -2:1, respectively.

These spikes indicate that there are factors affecting the returns of the
ETFs and indices that lie outside of the daily pricing. A better method is to
examine returns differences, which will help eliminate pricing abnormalities
and give us a better idea of the tracking fidelity between each ETF and its
reference index.
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1.3 Daily Return Difference
We calculated the returns differences

Differencet = RETF
t − βRindex

t

where β is the leverage ratio. We then plotted the time series for these results
and noticed a significant improvement in our data.

The mean of daily return difference is much tighter fluctuation about 0.
Since we are using scaled differences, we expect to see our data fluctuate
about a mean of 0. Figure 2 shows that the outlying data points are closer
to the expected value by at least an order of magnitude.

2 OU Process
In theory, if the returns of an ETF and index differ, then the ETF will correct
in pricing. The divergence will continue to happen, but we expect to see the
returns differences return to their mean after they diverge. To test the mean
reversion, we modeled our data as an Ornstein−Uhlenbeck process.
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An Ornstein−Uhlenbeck process satisfies the stochastic differential equa-
tion (SDE)

dXt = θ(µ−Xt)dt+ σdWt

where µ > 0 is the speed of mean-reversion, θ ∈ R is the long-run mean, σ
> 0 is the volatility parameter. We want to estimate µ in order to see how
quickly the price differences correct.

2.1 Issues
We used maximum likelihood estimation to estimate parameters of OU model,
but it resulted in complex values for µ and θ. Seeing as an OU process is
a continuous time process, and our data are observed in discrete time, we
decided to estimate the degree of time dependence between returns as an
AR(1) model, which is roughly the discrete-time equivalent of an OU process.

2.2 AR(1) Model
A standard AR(1) model is given by

Xt = c+ ϕ1Xt−1 + εt ⇔ Xt+1 −Xt = (1− p)( c

1− p −Xt + εt)

where ρ is the coefficient of correlation that indicates the level of time de-
pendence between Xt and Xt−1. To estimate ρ, we used a least squares
estimate

ρ =
∑n
k=2XkXk−1∑n
k=2 X

2
k−1

2.3 Results
ETF OIL USO SCO USL DWTI UWTI UCO DBO DTO
ρ̂ −0.078 −0.527 −0.065 −0.252 −0.511 −0.517 0.013 −0.499 −0.038

Unofrtunately there doesn’t appear to be any strong correlation between
AR(1) estimates and the LETF ratios. Both leveraged and unleveraged,
even ones that track the same index, have disparate levels of time depen-
dence. With more than 1-lag, the time dependence drops below the |0.2|
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level of signifcance, but for the 1-lag case between Xt and Xt−1 there ap-
pears to be significant differences in time dependence. One important result
from our estimates is that all but one of our AR(1) coefficient estimates are
negative, indicating that returns have a negative time dependence and this
reinforces our claim that returns data has mean-reversion properties. The
returns correct once they diverge from the mean, and continue to do so over
time.

3 Fit to a Distribution
We have calculated the daily return difference of ETF and reference index.
And now we want to fit the histograms to well-known distributions and find
which one fit the best.

Figure 2: Here we have fit our data to a double exponential distribution (left)
and a double exponential distribution (right).
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3.1 Results
Our results are best captured by a double exponential distribution. We see
clustering of the majority of our data close to 0, indicating that the majority
of our returns differences are close to zero, both positive and negative. With
the exception of a few outliers, we see that this supports our claim that
returns differences have mean-reversion properties.

3.2 Theoretical
One of our goals was to estimate the leverage ratio for each LEFT. We did this
using Tim Leung and Marco Santoli’s method from ”Leveraged Exchange-
Traded Funds: Price Dynamics and Options Valuation”. Here is a brief over
view of the mathematics behind their method.

The log return for day k of a LEFT is given by

log Lt+∆k

Lt
= β log St+∆k

St
+ θV

(k)
t + ((1− β)r − f)k∆t (1)

where L is the value of the LEFT, S is the value of the reference index, V (k)
t

is the realized variance, r is the interest rate on the borrowing amount and
f is a small expense fee.

Due to log St+∆k

St
and θ being strongly dependent we can’t use a linear

model to estimate the leverage ratio. Theoretically, θ has a value of β(1−β)
2 .

This leads to an issue of colineartiy, where our estimates for volatility coef-
ficient θ̂ are heavily dependent on our esitmates for the leverage ratio β̂. To
help eliminate this issue, we used Tim and Marco’s method of solving the
optimization problem

min
β∈R

n∑
i=1

(yi − fi(β))2 (2)

where yi are the empirical log returns of the LETF and fi(β) is the theoretical
log return defined by

fi(β) = βxi + β(1− β)
2 vi + ((1− β)r − f)∆T

= β(xi − r∆T )− β(1− β)
2 vi + (r − f)∆T
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where xi and vi are the log return and realized variance of the reference
index. This will allow us to accurately estimate leverage rations and then
use these to find θ̂ estimates.

From the first-order optimality condition we can find the leverage ratio
n∑
i=1

(yi − fi(β))(xi − r∆T − βvi + 1
2vi) = 0 (3)

And by expansion we have
n∑
i=1

(yi − fi(β))(xi − r∆T − βvi + 1
2vi) (4)

=
n∑
i=1

(yi − fi(β))(xi − r∆T − βvi + 1
2vi) (5)

=
n∑
i=1

(yi − β(xi − r∆T ) + β2

2 vi −
β

2 vi − (r − f)∆T )(xi − r∆T − βvi + 1
2vi)

(6)

=
n∑
i=1

(yi − (r − f)∆T + β(xi − r∆T + vi
2 ) + β2

2 vi)(xi − r∆T − βvi + 1
2vi)

(7)

=(−
n∑
i=1

v2
i

2 )β3 (8)

+ (
n∑
i=1

3
2(xi − r∆T )vi + v2

i )β2 (9)

+ (
n∑
i=1
−((xi − r∆T ) + 1

2vi)
2 + vi((r − f)∆T − yi))β (10)

+ (
n∑
i=1

(yi − (r − f)∆T )((xi − r∆T ) + 1
2vi)) (11)

(12)

which reduces to
Aβ3 +Bβ2 + Cβ +D = 0. (13)
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where

A = −
n∑
i=1

v2
i

2 (14)

B =
n∑
i=1

3
2(xi − r∆T )vi + v2

i (15)

C =
n∑
i=1
−((xi − r∆T ) + 1

2vi)
2 + vi((r − f)∆T − yi) (16)

D =
n∑
i=1

(yi − (r − f)∆T )((xi − r∆T ) + 1
2vi) (17)

(18)

and dividing by A we have

β3 + bβ2 + cβ + d = 0 (19)

By the well-known Cardano’s method for cubic polynomials, the explicit
solutions when the discriminate is negative are given by

β1 = u0 + u1 −
b

3 , β2,3 = −1
2(u0 + u1)± i

√
3

2 (u0 − u1)− b

3 (20)

where

ui =

√√√√−p2 + (−1)i
√
p2

4 + q3

27 (21)

p = 2b3 − 9bc+ 27d
a

, q = 3c− b2

3 (22)

if the discriminate is equal to 0 then we have 3 roots with 2 of them being
equal.

− 2
√
−q3 −

b

3 ,
√
−q3 −

b

3 ,
√
−q3 −

b

3 if p > 0 (23)

2
√
−q3 −

b

3 ,−
√
−q3 −

b

3 ,−
√
−q3 −

b

3 if p < 0 (24)

0, 0, 0 if p = 0 (25)
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if the discriminate is greater than 0

βn = 2
√
−q3 cos(γ3 + 2nπ

3 ), n = 0, 1, 2 (26)

where

γ = cos−1

√√√√ p2/4
−q3/27 (27)

This is the general idea behind Tim and Marco’s idea and what we used to
create leverage ratio estimates.

4 Findings
We used MATLAB to get estimates via linear regression and Leung and
Santoli’s method.

ETF β θ β̂cub β̂reg θ̂cub θ̂reg
OIL 1 0 −0.018 0.010 −0.009 −7.341
USO −2 −3 0.255 0.265 0.095 −1.695
SCO 1 0 0.068 0.057 0.032 2.261
USL −3 −6 0.019 0.038 0.009 2.752
DWTI 3 −3 −0.148 −0.138 −0.085 −1.598
UWTI 2 −1 0.270 0.273 0.099 −0.557
UCO 1 0 0.481 0.493 0.125 −2.256
DBO −2 −3 0.971 0.964 0.014 0.988
DTO 1 0 −2.706 −2.775 −5.105 3.526

Unfortunately, we were unable to recreate their results. We were able to
recreate their results for equity LETFs, but we could not do so for our com-
modity LETFs.

5 Conclusions
We can reasonably conclude that ETF returns are able to be modeled as a
stochastic process with mean-reversion. Unfortunately we couldn’t recreate
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the results from Leung and Santoli, but our hypothesis is that the empir-
ical leverage rations and volatility coefficients are less accurate for volatile
commodity ETFs than for more stable equity ETFs.
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