
Introduction 
Our   project,   Graphs   and   Machine   Learning,   held   under   the   WXML,   was   inspired   by   a   paper   Dr. 
Billey   co-wrote,   entitled   “Fingerprint   Database   for   Theorems”   with   Bridgette   Tenner.   The   initial 
goal   of   this   project   was   to   create   a   searchable   database   for   graphs   similar   to   the   Online 
Encyclopedia   of   Integer   Sequences   (OEIS).   The   purpose   of   such   a   database   is   straightforward. 
Say   a   professor   or   researcher   thinks   they   have   made   a   new   discovery   and   that   said   discovery 
produces   a   graph.   Given   the   aforementioned   database,   the   professor   could   then   input   a   graph 
related   to   the   theorem   they   produced   and   search   if   someone   else   has   already   discovered   said 
theorem.   If   someone   already   has,   then   the   professor   could   then   find   out   who   found   the   theorem 
and   potentially   other   related   theorems,   via   searching   related   graphs.   Hence,   our   group   aims   to 
document   certain   forms   of   theorems   from   graph   theory   into   an   online   searchable   database,   for 
which   papers   and   references   may   be   indexed   by   the   graphs   contained   within   them.   In   the   process 
of   creating   this   encyclopedia   of   graphs,   or   Graphlopedia,   we   developed   a   number   of   tools   and 
made   several   design   decisions   for   our   database. 

Database   Creation 
We   elected   to   store   the   graphs   we   collected   in   a   document-based   database   for   several   reasons. 
Chief   among   these   was   the   flexibility   offered   by   this   style   of   database;   with   a   document-based 
database,   we   could   add   different   fields   and   amend   previous   entries   anytime   in   the   future   with 
ease.   Furthermore,   we   had   already   constructed   several   database   entries   by   hand   in   a   JSON 
format,   and   it   is   trivially   easy   to   add   data   in   this   format   to   a   document   database.   Of   all   the 
document-based   databases   available,   we   selected   MongoDB   for   our   purposes   due   primarily   to   its 
extensive   documentation   and   proven   track   record.   Apart   from   simply   storing   graphs,   this   database 
also   stores   families   of   graphs   and   users   for   the   web   app   we   constructed. 
 
In   order   to   share   the   data   we   collected   with   the   world,   and   to   allow   others   to   contribute,   we 
decided   to   construct   a   web   application   that   would   allow   anyone   to   view   our   graphs   and   to   propose 
new   additions.   This   had   always   been   the   goal   of   the   project,   as   described   earlier .  
 
We   currently   have   a   working   system   for   the   website   but   it   is   currently   not   yet   available   to   the 
public.         We   have   created   an   account   on   the   UW   computer   system   called   Ovid   which   will   host 
webpages   with   search   capabilities.         We   still   need   to   setup   additional   software   on   Ovid   to   support 
MongoDB.            The   website   will   appear   at    http://depts.washington.edu/graphlop/ .            Our   plan   is   to 
purchase   the   domain   name   graphlopedia.org   once   our   system   is   running   publicly.  
 

http://depts.washington.edu/graphlop/


Invariant   Selection   and   Database   Input 
We   opted   to   include   invariants   that   were   both   efficient   for   manual   entry   into   the   database   and 
sufficient   for   the   user   to   distinguish   between   entries.   Hence   selection   for   invariants   was   key   to 
efficiency   and   efficacy   of   database   input.      In   our   selection   process   we   found   that   there   are   a   few 
invariants   that   we   can   use   to   differentiate   different   graphs,   though   not   all   are   ideal   for   the   job.   An 
adjacency   matrix   is   an   obvious   choice   for   a   fingerprint   candidate,   however   a   single   graph   can 
have   multiple   equivalent   adjacency   matrices,   and   deciding   on   a   canonical   form   for   such   matrices 
is   a      non-trivial   task.      We   chose   to   fingerprint   graphs   by   their   degree   sequence:   a   list   of   the 
number   of   edges   connected   to   each   vertex,   entered   in   descending   order.   While   a   degree 
sequence   isn’t   necessarily   a   unique   fingerprint,   since   two   different   graphs   can   have   the   same 
degree   sequence,   a   mathematician   can   easily   search   our   database   by   degree   sequence   and 
narrow   their   search.      There   will   be   no   false   negatives,   only   false   positives.      Other   useful   invariants 
are   the   eigenvalues   of   the   adjacency   matrices,   the   chromatic   number,   and   the   clique   number.   The 
eigenvalues   are   a   dominant   trait   in   graph   theory,   but   the   values   are   complex   numbers   so   they 
can’t   always   be   stored   effectively   in   our   database.   Storing   the   characteristic   polynomial   is   a   more 
sound   approach   and   it   encodes   the   same   data   in   principle.      Within   the   coming   months   we   hope   to 
develop   algorithms   to   automate   calculations   of   said   invariants   from   our   existing   entries.   Currently, 
we   have   a   number   of   methods   to   compute   different   invariants   described   below. 
 
In   order   to   maximize   user   search   efficiency   we   decided   to   input   invariants   in   canonical   order.      To 
store   the   data   we   collected   from   our   graphs,   we   needed   to   format   it      consistently.   We   determined 
that   JavaScript   Object   Notation   (JSON)   is   an   efficient   and   convenient   way   to   enter   the 
information.   At   this   time,   we   have   the   following   fields   for   each   graph   in   the   database:   title,   name, 
vertices,   edges,   degree   sequence,   links,   comments,   references,   and   contributors.      At   the   current 
moment   graphs   and   papers   are   searchable   via   keywords,   degree   sequence   and   graph   index 
though   we   hope   to   extend   our   search   mechanisms   to   allow   for   greater   specificity   soon. 
 
More   recently,   we   added   a   new   type   of   entry   to   the   database,   graph   families.   So   far   we   only   have 
two   families,   the   Petersen   family,   and   the   non-planar   characterization   family   (K 5 ,   K 3,3 ).      It   is   our 
hope   that   allowing   for   graphs   to   be   searched   for   by   their   corresponding   families   may   elucidate 
related   theorems   and   published   materials,   facilitating   research   within   the   field. 
 
 

Graph   Extracting   Programs 
We   allow   the   users   (including   us)   to   contribute   to   our   database.   However   the   database   stores 
numerical   and   text   data   while   the   users   may   only   have   a   graph   image   from   a   journal   article   or 
website,   hence   there   is   a   need   for   a   tool   to   extract   a   graph   from   a   digital   image.   To   accomplish   this 
goal,   we   designed   two   programs   using   Python.   One   of   them   can   efficiently   extract   graphs   drawn 



using   LaTex,   which   has   a   special   way   to   encode   its   images.   Making   use   of   this   fact,   this   program 
directly   retrieves   the   graph   data   from   a   LaTex-written   PDF   file. 
 
The   other   program   can   process   a   variety   of   image   types   (.jpg,   .png,   etc.)   using   OpenCV,   a 
package   dedicated   to   perform   image   processing.   Before   we   jump   into   details   about   the   procedure 
of   the   program,   let’s   first   discuss   about   how   an   image   is   stored   in   a   computer. 
 
A   digital   image   is   composed   of   pixels,   the   smallest   unit   representing   a   certain   color.   Therefore   in   a 
computer,   an   image   is   essentially   a   matrix   of   pixels.   For   example,   if   an   image   has   resolution   ,Error  
then   essentially   this   is   a      matrix.   Moreover,   just   like   in   real   life   where   any   color   is   a   mix68 0247 × 1  
of   yellow,   blue   and   red,   a   color   in   a   computer   is   represented   with   R   (red),   G   (green)   and   B   (blue) 
values,   all   of   which   range   from   0   to   255.   Each   pixel   stores   a   tuple   of   these   three   values,   so 
technically   an   image   is   a   matrix   of   tuples,   not   numbers.   However   it   is   in   general   much   more 
convenient   to   process   a   2D   matrix   than   a   3D   cube.   So   most   of   the   time   when   performing   image 
analysis,   we   convert   a   color   image   into   a   monochrome   one,   which   in   computer   vision   is   called   a 
grayscale   image.   After   the   conversion,   the   image   becomes   a   2D   matrix   of   integers   in   the   range   [0, 
255].   Furthermore,   it   turns   out   that,   at   least   in   our   case,   the   problem   size   can   be   further   reduced. 
Based   on   the   intuitive   fact   that   a   graph   only   needs   two   colors   to   represent,   we   can   define   the   pixel 
representing   the   graph   to   have   value   1   and   the   that   representing   the   background   to   have   value   0. 
The   result   is   called   a   binary   image,   and   many   image   processing   algorithms   are   based   on   this 
version   of   the   original   image. 
 
In   what   follows,   we   will   discuss   how   the   program   can   extract   a   graph   step   by   step. 

Preparation 
When   a   human   attempts   to   recognize   a   graph   from   an   image,   they   will   naturally   first   want   to   locate 
the   vertices.   This   is   also   true   for   our   program.   The   program   first   asks   the   user   to   provide   a   image 
file,   and   then   it   asks   the   user   to   crop   a   piece   of   the   image   that   contains   a   vertex.   In   computer 
vision,   this   piece   is   usually   called   a    template .   Using   this   vertex   example,   the   program   then 
performs    template   matching ,   a   technique   which   simply   scans   the   whole   image   to   find   a   piece   that 
match   the   example   the   most.   It   only   finds   one   piece   per   run   so   in   general   this   should   be   executed 
multiple   times.   Unfortunately   this   technique   is   not   perfect,   meaning   that   it   can   make   errors   when 
detecting   the   vertices.   We   implemented   some   features   to   manually   fix   these   errors.   Overall   this 
step   is   not   so   difficult. 

Noise   Reduction   and   Image   Thinning 
Earlier   we   mentioned   that   a   graph   only   takes   two   colors   to   represent.   However   even   if   some 
graph   images   seem   to   contain   only   two   colors,   there   are   often   more   than   two.   Therefore   in   order 
to   make   use   of   the   well-developed   algorithms   we   need   to   convert   the   image   into   a   binary   version. 
Changing   an   image   from   a   color   version   into   a   monochrome   one   is   straightforward   since   there 
exists   a   standard   method.   But   converting   a   monochrome   image   into   a   binary   one   can   be   tricky. 



The   method   is   simple:   for   a   pixel,   if   the   value   is   higher   than   or   equal   to   a   certain   value,   then   we 
set   it   to   0   since   this   is   a   background   pixel,   otherwise   we   set   it   to   1   since   it   represents   a   content 
pixel.   The   problematic   part   is   the   threshold   value,   as   there   is   no   guarantee   that   a   certain   value 
can   divide   the   background   and   the   content   perfectly.   Since   we   do   not   want   to   lose   any   content 
pixel,   it   is   safe   to   set   the   threshold   to   be   the   background   value   in   the   original   image.   As   a   result,   in 
the   binary   image,   many   non-content   pixels   will   become   part   of   the   content   (they   all   have   value   1 
now).   We   call   this   group   of   pixels   the    noise    of   an   image.   There   are   two   primary   algorithms   to 
reduce   the   noise:    erosion    and    dilation .   If   we   think   the   background   as   an   ocean   and   the   content   as 
an   island,   then    erosion    is   like   the   same   term   in   real   world:   it   makes   the   ocean   (background)   to 
take   over   the   shore   of   the   island   (content).    Dilation    is   exactly   the   opposite.   These   operations 
usually   come   together   to   reduce   the   noise   of   an   image,   as    erosion    cleans   the   outlying   pixels   while 
dilation    fills   the   holes.   Our   program   interacts   with   the   user   to   perform   these   two   operations   in 
order   to   obtain   a   satisfied   result   where   the   noises   are   greatly   reduced. 
 
Usually   a   graph   is   drawn   with   curves   of   certain   width   for   better   display.   However   when   recognizing 
a   graph   from   an   image,   what   really   matters   is   the   graph   structure,   hence   the   need   to   obtain   the 
“skeleton”   of   the   image.   This   step   is   called    image   thinning .   There   are   a   few   well-developed 
algorithms   that   can   do   this   work,   here   we   implemented   zhang-seun’s   algorithm   and   this   step   is 
automatically   executed   after   the   noise   reduction. 

Edge   Extraction 
Now   that   we   have   the   locations   of   the   vertices   and   the   binary   skeleton   of   the   graph,   we   can   now 
consider   extracting   the   edges.   The   first   task   is   to   locate   the   starting   points   of   each   edge.   There 
are   more   than   one   way   to   accomplish   this   goal.   In   our   program   we   simply   check   the   distance 
between   each   edge   pixel   and   the   center   of   each   vertex.   Next,   let’s   first   consider   an   easy   case 
where   there   is   no   edges   crossing   each   other.   Starting   from   one   end   of   an   edge,   we   can   trace   the 
entire   edge   by   following   this   algorithm: 
 

1. Obtain   the   neighborhood   of   the   current   point.   The   neighborhood   is   defined   to   be   the   eight 
points   surrounding   the   current   one.   For   each   of   these   neighbor   points,   if   its   pixel   value   is   1 
and   it   has   not   yet   been   examined,   then   put   it   into   the   candidate   set.   Go   to   step   2. 

2. If   the   candidate   set   is   empty,   go   to   step   3.   Otherwise,   for   each   point   in   the   candidate 
group,   go   back   to   step   1. 

3. Examine   if   the   current   point   belongs   to   the   starting   points   set   that   was   obtained   before   the 
execution   of   the   algorithm,   or   the   distance   between   the   current   point   and   any   vertex   center 
is   within   some   value.   If   so   then   we   are   done   with   the   current   edge   since   we   now   know 
which   two   vertices   it   is   connecting.   Otherwise   we   do   nothing   since   this   branch   is   caused 
by   some   noise. 

 
In   short,   this   algorithm   can   be   summarized   as   follows:   keep   looking   for   an   unexplored   point   till   we 
reach   the   end.   Now   let’s   consider   the   hard   situation   where   edge   crossing   exists.   Recall   that   a 
binary   image   is   a   matrix   of   0’s   and   1’s,   and   that   in   the   previous   algorithm   at   each   iteration   we   are 



considering   a   neighborhood   of   the   current   pixel.   Therefore   ultimately   we   are   trying   to   determine 
which   direction   to   go   when   we   encounter   some   cases   like   these: 
 

                                                                                                                                             1      0      0    1      1      1 
                                                                                                                                             0      1      0                                                0      1      0 

                                                                                                                                                                                 0      1      1                                                0      1      0 
       (a)             (b) 
 
In   other   words,   when   the   candidate   set   has   more   than   one   element,   we   want   to   avoid 
brute-force-search   and   try   to   correctly   determine   which   element   to   choose   to   proceed.   In   order   to 
accomplish   this   goal,   we   need   to   modify   the   algorithm   into   the   following: 
 

1. Obtain   the   neighborhood   of   the   current   point.   The   neighborhood   is   defined   to   be   the   eight 
points   surrounding   the   current   one.   For   each   of   these   neighbor   points,   if   its   pixel   value   is   1 
and   it   has   not   yet   been   examined,   then   put   it   into   the   candidate   set;    otherwise   put   it   in   a 
list   called    trail .   Go   to   step   2. 

2. If   the   candidate   set   is   empty,   go   to   step   3.   Otherwise,    go   to   step   4 . 
3. Examine   if   the   current   point   belongs   to   the   starting   points   set   that   was   obtained   before   the 

execution   of   the   algorithm,   or   the   distance   between   the   current   point   and   any   vertex   center 
is   within   some   value.   If   so   then   we   are   done   with   the   current   edge   since   we   now   know 
which   two   vertices   it   is   connecting.   Otherwise   we   do   nothing   since   this. 

4. Construct   a   list   of   vectors   called,   each   of   which   is   calculated   using   all   the   adjacent   points 
in   the   list    trail .   If   there   are   (n   +   1)   elements   in    trail ,   then   there   are   n   vectors   in   the   vector 
list.   Evaluate   a   weighted   sum   of   these   vectors   using   the   following   formula: 

Error  
Choose   a   candidate   which   has   the   direction   closest   to   this   sum,   and   then   go   to   step   1. 

 
In   step   4,   the   most   important   modification,   each   is   a   normalized   weight,   and   these   weightsai  
should   be   chosen   such   that   if   the   corresponding   is   closed   to   the   current   point,   then   has   av i ai  
rather   high   value.   The   intuitive   idea   behind   is   that,   we   are   evaluating   a   vector   from   the   previous 
path   in   a   reasonable   way   and   use   this   vector   as   a   reference   to   determine   which   direction   to   go   at 
a   cross.   Note   that   the    image   thinning    technique   often   creates   a   conjunction   at   a   cross.   So   when 
recording   the    trial ,   any   pixel   in   the   conjunction   should   be   excluded.   However,   the   conjunction 
structures   vary,   and   how   to   handle   these   conjunctions   brings   another   challenge   which   remains 
unsolved. 

Invariants   Evaluation 
When   the   essential   graph   information   (the   vertex   set   and   the   edge   set)   has   been   obtained,   we 
want   to   evaluate   some   of   its   invariants   and   store   them   into   our   database   for   more   efficient   query. 
We   have   implemented   methods   to   check   the   connectivity   (using   brute   force),   the   completeness, 



the   chromatic   polynomial   and   chromatic   number   (using   Zykov’s   algorithm),   the   cliques   (using 
Bron-Kerbosch   algorithm),   and   the   characteristic   polynomial. 
 
Another   noticeable   feature   of   this   program   is   the   error   checking.   Since   user   interaction   is   involved 
at   multiple   steps,   we   have   implemented   a   number   of   exception   handlers   to   ensure   that   the 
program   can   be   executed   with   minimum   interruption.   In   the   future,   we   will   try   to   improve   the 
existing   programs   by   attempting   to   solve   the   conjunction   challenge   in   the   edge   extraction   part   and 
fine   tuning   the   codes   to   make   them   more   efficient.   We   are   also   planning   to   introduce   another 
program   to   examine   the   graph   information   given   by   the   users   to   determine   if   the   input   is   valid. 

Conclusion 
We   have   numerous   goals   for   the   future.   We   will   spell   out   a   few   direction   for   next   year. 
 
We   currently   have   about   50   graphs   entered   into   our   database.   We   would   like   to   see   Graphlopeida 
include   all   of   the   journal   publications   and   arXiv   entries   that   contain   interesting   graphs.   Ideally   a 
majority,   if   not   all,   related   publications   of   a   certain   theorem   may   be   easily   accessed   from   our 
database.   However,   it   is   unfeasible   to   enter   hundreds   upon   thousands   of   graphs   by   hand,   and 
since   we   only   recently   published   our   website   we   currently   do   not   have   many   users   to   upload 
graphs   either.   Therefore,   a   potential   solution   to   hit   a   “critical   mass”   of   graphs   would   be   to   develop 
a   web   crawler   that   would   find   pdfs   and   images   containing   graphs   and   feeding   them   into   the 
aforementioned   graph   recognition   programs.  
 
In   the   future,   we   would   like   Graphlopedia   to   include   directed   graphs,   multigraphs,   and 
edge-weighted   graphs.   It   currently   only   supports   undirected,   unweighted,   simple   graphs.   This   is   a 
relatively   easy   addition   to   include   in   terms   of   the   database.   We   will   need   to   think   more   about   the 
appropriate   fingerprint/invariant. 
 
In   order   to   facilitate   automated   or   outside   database   input   we   hope   to   develop   algorithms   to   “fact 
check”   potential   entries,   with   the   end   goal   of   minimizing   the   necessity   for   manually   checking   input 
accuracy. 
  
A   few   graphs   in   our   database   contain   pointers   to   other   related   graphs   and   graph   families.   How 
could   we   assist   the   users   to   find   other   graphs   related   to   one   they   have   just   entered?   Should   we 
link   together   every   graph   that   appears   in   one   paper?   Should   we   leave   it   to   the   author   to   suggest 
related   graphs?   Can   this   be   automated   in   some   way   along   the   lines   of   the   Netflix   movie 
recommendations?   How   are   related   papers   characterized   by   the   graphs   contained   within   them 
and   how   may   we   accommodate   our   database   to   allow   for   a   related   paper   and   or   theorem   search? 
 
Finally,   given   more   image   data   on   graphs,   we   hope   to   apply   machine   learning   techniques   to   both 
improve   parts   of   our   image   recognition   algorithm   as   well   as   to   correlate   and   find   new   data   about 
the   graphs   in   our   database. 


