
WXML Final Report: Gravitational Billiards

Jayadev Athreya
Diaaeldin Taha
N’Vida Yotcho
Kush Gupta

Stephanie Anderson

Fall 2016

Abstract

The billiards game has a quite simple setting. The cues - sticks- are
used to launch the balls, which moves on a rectangular pool. But, what
would playing billiards on an upward circular pool look like? This report
exposed the theoretical and computational aspect of simulating such non-
traditional vertical billiards.

Contents

I Introduction 2

II Theoretical Background 2

IIIComputational Implementation 2

IVResults 3

V Example of the sage code for F is a paraboloid 5

VI Future directions 8

1

I Introduction

The gravitational billiards is an upward version of the well-known billiards
game, in which the earth gravitational field - gravity g - influences the balls
motion. Assuming that there is no friction, and that the system is totally
elastic, we simulated the motion of one billiards ball - reduced to its center of
mass- in such gravitational billiards, which pool is also reduced to its bound-
ary function F . The simulations were made with the following four boundary
functions: parabola, circle, paraboloid and sphere .

II Theoretical Background

Once the ball is launched in the gravitational billiards, it is in free-fall follow-
ing a projectile motion. But, if the ball collides with the boundary, its
trajectory has to change. Subsequently, each trajectory between two points
of collision could be considered as an isolated projectile motion with its own
initial values. As an example, a trajectory between two points of collisions P0

and P1 is the ball leaving P0 to collide with the boundary at P1, where the ball
would engage in another projectile motion with P1 as starting point. Since the
experimental settings allow no loss of energy, the collision ball-boundary would
result in the ball bouncing back with the same speed of before the collision. In
another word, the ball velocity-before-collision is simply reflected after collision.
We can take advantage of that aspect of our system and build our simulation
based on finding the different points, where the ball collides with the boundary.

III Computational Implementation

As mentioned earlier, F is the boundary function, then let’s H represents the
projectile motion of the ball
We then used the following lemma to code all simulations.

Step 1 The ball starts at P0 with velocity V0

Step 2 Find the next point P1 where F = H

Step 3 Draw the projectile motion between P0 and P1

Step 4 Reflect the Velocity V1 of the ball at P1

Step 5 Repeat steps 1 to 5 with P0 = P1

2

IV Results

F is paraboloid Click here to see the simulation

F is sphere Click here to see the simulation

(a) 100 collisions
(b) At 500 collisions, the ball motion is bounded by
an upper and a lower parabolas in addition to the
parabolic boundary

(c) Special case of 500 collisions with a higher value of g

Figure 1: F is a parabola

3

http://imgur.com/twJdrsy
http://imgur.com/v4zY3Ij

(a) 600 collisions - the ball follows a closed path
(b) 600 collisions - on a very small interval, the ball
strikes the boundary at least once

Figure 2: F is a circle - no gravity

Figure 3: F is a circle - with gravity

4

V Example of the sage code for F is a paraboloid

inspired from Stephanie Anderson’s paraboloid.m

created by N’Vida A. Yotcho

Fall 2016

import math

import numpy as np

import matplotlib.pyplot as plt

####################### SPHERE- GRAV BILLIARDS #######################

def X_func(Vx0, t, x0):

return RR(Vx0*t + x0)

def Y_func(Vy0, t, y0):

return RR(Vy0*t + y0)

def Z_func(g, t, Vz0, z0):

return RR(-0.5*g*(t**2) +(Vz0*t)+z0)

def Vz_func(t,Vz0, g):

return RR(-g* t + Vz0)

########### NEXT P1 ##############

def find_t(r, g,x0, y0, z0, Vx0, Vy0, Vz0):

real_t = (Vz0-2*x0*Vx0-2*y0*Vy0)/(0.5*g +Vy0**2 +Vx0**2)

#print real_t

P = np.array([real_t, X_func(Vx0,real_t,x0),Y_func(Vy0,real_t,y0), Z_func(g,real_t,Vz0,z0), Vz_func(real_t,Vz0,g)])

return P

########### NORMAL VECTOR #########

def normal(P):

return np.array([2*P[0] , 2*P[1], -1])

def norm_Of(V):

return np.sqrt(V[0]**2 + V[1]**2 + V[2]**2)

########## REFLECTION OF V ############

5

#Vprime = V - 2Vn with Vn : proj of V onto n

def reflect_V(normal, V) :

Vprime = V - 2*(np.dot(normal, V)/ (norm_Of(normal)**2))*normal

return Vprime

################# PLOTTING ##############

def motion(g,x1,x0,y0,z0,Vx0,Vy0,Vz0, colors):

#print "... PLOTTING TRAJECTORY ..."

u = var("u")

z(t) = -0.5 * g * t**2 + Vz0*t + z0

x(t) = Vx0*t + x0

y(t) = Vy0*t + y0

return parametric_plot3d((x(u), y(u), z(u)), (u,0,x1),color=colors, opacity=0.40)

############### BILLIARDS ##############

def paraboloid_billiards(radius, x0, z0, y0, Vx0, Vy0,Vz0, g, thresh):

x,y, z= var("x, y, z")

#graph = plot3d(x**2+y**2, (x,-radius, radius),(y,-radius, radius), color="yellow", opacity=0.20)

graph = point3d((x0,y0,z0), color="blue", opacity=0.1)

col = 5

colors = ["red","yellow", "green","magenta", "cyan"]

for dec in range(thresh):

if col ==0:

col=3

else :

col = col-1

#Calculations

PV= find_t(radius, g,x0, y0, z0, Vx0, Vy0, Vz0)

V= np.array([Vx0, Vy0, PV[4]])

Vreflected = reflect_V(normal(np.array([PV[1], PV[2], PV[3]])), V)

graph= graph + motion(g,PV[0],x0,y0,z0,Vx0,Vy0,Vz0, colors[col])

#updates

6

x0 = PV[1]

y0 = PV[2]

z0 = PV[3]

Vy0 = Vreflected[1]

Vx0 = Vreflected[0]

Vz0 = Vreflected[2]

graph = graph + point3d((x0,y0,z0), color=colors[col], opacity=0.1)

show(graph)

######### MAIN ##########

def check_initial_condition(a, b, c):

p=[]

if a > 0 and b + c < 0:

return 0

elif abs(a) > 2*(b + c):

return 0

return 1

def main(x0, y0, Vx0, Vy0, Vz0, thresh):

radius= 4 #not important

g = 9.8

#case 1

z0 = sqrt(x0**2 + y0**2)

print " P = ({0}, {1}, {2}) ; V = < {3}, {4}, {5} > ".format(x0,y0,z0,Vx0,Vy0,Vz0)

if check_initial_condition(Vz0, x0*Vx0, y0*Vy0) == 0:

paraboloid_billiards(radius, x0, z0,y0, Vx0, Vy0, Vz0, g, thresh)

print " "

else :

print " IVP not in Domain "

#case 2

z0 = x0**2 + y0**2

#

print " P = ({0}, {1}, {2}) ; V = < {3}, {4}, {5} > ".format(x0,y0,z0,Vx0,Vy0,Vz0)

#

#

7

if check_initial_condition(Vz0, x0*Vx0, y0*Vy0) == 0:

paraboloid_billiards(radius, x0, z0,y0, Vx0, Vy0, Vz0, g, thresh)

print " "

else :

print " IVP not in Domain "

############################## OBSERVATION ##############################

collisions = 500

#Flowers - like

#main(1, 1, -10, 10, 20, collisions)

#main(1, 1, 10, -10, 20, collisions)

#

#Picks - like

#main(2, 3, -5, -5, 10 , collisions)

#closed path - like

#main(-3, -4, 0.2, -0.3, 2, collisions)

#main(0, 2, -0.2, -0.3, 2, collisions)

only on the z plane

main(5,5,-10,-5,25, collisions)

VI Future directions

• Develop a code that simulates trajectories for any boundary.

• Create a game.

• Simulate trajectories for other type of boundaries.

8

	Introduction
	Theoretical Background
	Computational Implementation
	Results
	Example of the sage code for F is a paraboloid
	Future directions

