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1 Introduction

Student in this project investigate the possibilities arising from representing
sets of positive integers as sound.

A digital audio file is created from a given set A of positive integers by
setting sample number i to a non-zero constant c for all i in the set. All
other samples are set to zero.

For example, the waveform for the primes starts like this:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

∆t

We use the standard CD-audio sampling rate of 44100 samples per second,
so ∆t = 1

44100
= 0.0000226757... seconds.

For many sets, the result is what most people would describe as noise.
Students worked on this project last Spring, and new students continued

the project this quarter. We started with four students, but two dropped
out. The remaining two, Hannah Van Wyk and Jesse Rivera, were very
productive and we all had many fascinating discussions.

This quarter, the focus was on sequences in the Online Encyclopedia
of Integer Sequences (OEIS). The encyclopedia provided a huge variety of
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sequences to experiment with, with clear definitions and (at least some) con-
text.

Sound files for more than 50 integer sequences were created this quarter.
They can be heard here:

http://www.math.washington.edu/~conroy/sequenceNoise/indexWXMLaut2016.htm

Commentary on some of Hannah’s and Jesse’s work is below.

2 Progress

2.1 Hannah Van Wyk’s commentary

Out of all the different types of number sequences we explored throughout the
quarter, the ones that sounded the most unpredictable and enigmatic to me
were the Beatty sequences. Beatty sequences are advantageous because they
allow us to use functions which would normally be impractical in our study of
integer sequences (such as logarithmic functions or trigonometric functions).
The Beatty sequences include only the integer value of an irrational number in
a sequence by rounding down the number (also known as the floor function).

The sound for bn log nc stands out as particularly unusual. The pitches
in the sequence are very clearly defined with no gritty effects. These pitches
are decreasing or increasing in frequency very smoothly (at least up until 23
seconds) much like a few staggered police sirens would sound in slow motion.
Here is a spectrogram of the sound which shows frequency plotted against
time:
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My group discovered a characteristic of the sequence which may explain
the unusual nature of the sound and the spectrogram. When you make a
new sequence by subtracting every nth term of the sequence from the n+1st
term to create the sequence of consecutive differences of bn log nc, you get
this:

1, 2, 2, 3, 2, 3, 3, 3, 4, 3, 3, 4, 3, 4, 4, 4, 4, 3, 4, 4, 5, 4, 4, 4, 4, 4, 5, 4, 5,

4, 4, 5, 4, 5, 5, 4, 5, 4, 5, 5, 4, 5, . . .

This shows a few interesting things. The first is that the differences
increase by no more than one at a time. It also appears to take longer for
the differences to increase as they get higher (there are only 3 2s before they
stop reappearing but there are 8 3s.) This has something to do with the
characteristics of a Beatty sequence and the logarithmic function. We are
still unsure about why exactly this sequence of differences of bn log nc creates
the sound it does, but we are hoping to continue exploring this in the future.

2.2 Jesse Rivera’s commentary

2.2.1 Partial sums of solutions to the Josephus problem (A256249):

This sequence stood out to me because of its similarities to another simpler
sequence; it sounds exactly like the sequence of squares, only with multiple
beginnings. The sequence of squares has gaps of 1, 3, 5, 7, . . .. This sequence
has gaps of 1, 1, 3, 1, 3, 5, 7, 1, 3, 5, . . .. So the gaps in this sequence follow the
same pattern, only in this sequence the gaps reset to 1 every time the next
highest power of 2 is reached. This results in the two sequences sounding
identical, only in the second sequence the sound repeatedly restarts after a
certain period of time, with this period of time increasing after each repeti-
tion.

2.2.2 Numbers in base 5 (A007091):

This sequence is interesting in that its sound has a fractal waveform. There
is a pattern of five distinct sounds grouped together, with each distinct sound
separated by a period of silence. There are then five of these groups separated
by periods of silence that are a magnitude of 10 larger than the previous
smaller gaps, and so on. The smallest subgroup consists of the numbers
0− 4, 10− 14, 20− 24, 30− 34, 40− 44, which are separated by gaps of 10.
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The next group is the subgroups 0 − 44, 100 − 144, 200 − 244, 300 − 344,
400−444, which are separated by gaps of 100. This pattern continues as the
sequence progresses.

2.2.3 Trigonometric sequences, e.g. positive integers n such that
sinn < 0 and sin(n+ 2) < 0 (A277096):

These sequences produced sounds containing multiple clear and steady tones.
Spectrograms reveal dominant frequencies that indicate patterns occurring
at multiples of 2π in the sequence, however, there cannot be patterns occur-
ring regularly at multiples of 2π since the sequence is composed entirely of
integers. Furthermore, differences between consecutive terms of the sequence
are constrained to 1, 6, and 7. We are still unsure of what is causing these
frequencies, although it is intuitive for pi to show up in sequences defined by
trigonometric functions. I suspected that the average of the gaps might be
2π, but it is not (it turns out to be approximately 5.5 for the first 150, 000
terms of the sequence).

2.2.4 Connell Sequences (A001614, A045928, A033291, etc.):

I found the Connell sequences to be interesting because it is possible to alter
the definition of the standard sequence and end up with similar yet unique
sounds. The Connell sequence is defined as follows: take the first odd num-
ber, then the next two even numbers, then the next three odd numbers, etc.
This can be thought of a sequence of subsequences, with the first subsequence
being 1, the next subsequence being 2, 4, the next being 5, 7, 9, and so on.
The standard Connell sequence sounds exactly like the squares; this is be-
cause the sequence is composed entirely of gaps of 2, with gaps of 1 occurring
after each square. The fact that the gap is different at each square is what
causes the sequence to sound identical to the squares. There exists, however,
an ultrasonic tone (with a frequency of 22, 050 Hz) caused by the gaps of
2. Since we are unable to hear this tone, the sequence sounds exactly like
the sequence of squares. I also thought that the standard Connell sequence
was interesting in that the sequence of partial sums of this sequence sounds
strikingly similar to the sequence itself.

The Connell sequence can be generalized to having two parameters: the
first being differences in consecutive terms of each subsequence, and the
second being how much longer each subsequence is than the previous. By
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this definition the standard Connell sequence would have parameters of 2, 1.
Increasing the first parameter lowers the frequency of the steady underlying
tone of the sound, while increasing the second parameter causes the sound
to resemble higher figurate sequences.

Generalizing the Connell sequence even further, one can define sequences
such as A033291 (take the first multiple of 1, the next two multiples of 2,
the next three multiples of 3, etc.). The resulting sequences sound similar in
the sense that they all resemble the figurate sounds (beginning with a high
pitched tone that gradually decreases), yet each sequence has its own unique
sound and is easily distinguishable from other Connell-like sequences.

2.2.5 Number of odds in the first n rows of Pascals triangle (A006046):

I found this sound to be interesting because it represents a characteristic
of Pascals triangle, a mathematical structure with many notable features.
Gaps in the sequence signify how many odds are in a given row (i.e. a long
duration of silence indicates many odds). This sequence is strictly increasing
since each row of Pascals triangle begins and ends with 1, an odd number.
The sound has a repeating pattern that occurs regularly, and even far into
the sequence there are both small and large gaps, signifying that there are
rows deep in Pascals triangle that consist of mostly odds, followed by rows
containing very few odds.

3 Future directions

The OEIS is vast, so there is really no end in sight for this general work of
creating sounds. This quarter, though, it has become clear that some explo-
ration of Fourier analysis (and signal analysis generally) would be helpfull
for addressing many questions that have arisen from the work.

Beatty sequences in particular will be a great starting point for exploring
Fourier analysis of these sounds, as they are just complex enough to exhibit
surprising phenomena. I anticipate at least some future project members
spending a good deal of effort on these sequences.
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