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1 Introduction

Properties of infinite graphs can often be approximated by large finite sub-
graphs. An example of this phenomenon occurs with spanning trees, where
the growth rate of the number of spanning trees on finite approximations con-
verges to a well-known quantity called Mahler measure. Specifically Mahler
measure gives the entropy of a dynamical system involving spanning forests of
the infinite graph [4]. This project seeks to understand how this happens, its
connections to other areas of math, and new variations of these phenomena
to explore.

Figure 1.1: A ladder graph. This illustrates the infinite ladder by considering
the infinite graph that goes to infinity in both directions.
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1.1 Background

This project was a continuation of the “Large Scale Behavior in Graphs”
WXML project from Spring 20161 [2]. We are interested in determining the
growth rate of the number of spanning trees on families of graphs that look
the same at every vertex or have translational symmetry. This gives a way
to measure the “complexity” of the infinite structure.

Below is some terminology that will be used in the following sections.

Definition 1.1. A tree is a connected graph with no cycles. Equivalently,
it is a graph in which there is exactly one path from any vertex to any other.

Definition 1.2. A subgraph T (V,E ′) of a graph G(V,E) is a spanning tree
if it is a tree that contains every vertex in V .

Figure 1.2: A grid graph on the left and example of a spanning tree of the
grid graph on the right.

1.2 Project Goals

Our motivating question is as follows. If we consider a family of finite graphs
which approximate an infinite one, how does the number of spanning trees

1The project report for the Spring 2016 project is available at http://www.math.

washington.edu/wxml/Trees.pdf
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Figure 1.3: An example of a spanning tree (in black) on a truncated ladder
graph.

grow as the graphs get bigger? To approach this question we must first
determine what it means to approximate an infinite graph, which is described
in section 1.3.

1.3 Boundary Conditions

In this section we will discuss different finite approximations, called boundary
conditions. In section 2.3 we will discuss why boundary conditions do not
affect the limiting numbers for the graphs we have been investigating.

All these methods of approximation start with taking a nested family of
finite subgraphs of the infinite graph. If we stop there, we are working with
truncated boundary conditions. However, we can also make modifica-
tions at the boundary vertices, that is, the vertices which connect to a
vertex outside of the subgraph.

If we identify opposite boundary vertices, we have periodic boundary
conditions. This preserves more of the graph’s symmetry since there is no
longer a distinct cutoff point as in the truncated boundary.

Alternatively, under wired boundary conditions, one “wires” the bound-
ary vertices to an additional vertex “at infinity” by adding an edge between
each of the boundary vertices and this new vertex. Examples of the ladder
graph with these various boundary conditions are given in figures 1.4, 1.5,
and 1.6.

We have been focusing on periodic boundary because of the symmetry it
provides, which is discussed in section 2.4. We found that boundary condi-
tions do not affect the growth rate for typical graphs, which is discussed in
section 2.3.
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Figure 1.4: This is an example of the ladder graph with truncated boundary.

Figure 1.5: This is an example of the ladder graph with periodic boundary
where one identifies the ends of the graph.

2 Progress

2.1 Computational

Definition 2.1 (Graph Laplacian). Given a simple graph G with n vertices,
its Laplacian matrix L is defined as the n × n matrix L = D − A, where D
is the degree matrix and A is the adjacency matrix of the graph.
The entries of L are given by:

Li,j =


deg(vi) if i = j,
−1 if i 6= j and vi is adjacent to vj
0 otherwise.

Theorem 2.2 (Kirchoff’s Matrix Tree Theorem). For a given connected
graph G with n labeled vertices, let λ1, λ2, ..., λn−1 be the non-zero eigenvalues
of its graph Laplacian. Then the number of spanning trees of G is

t(G) =
1

n
λ1λ2 · · · λn−1.

4



∞

Figure 1.6: This is an example of the ladder graph with wired boundary
where one wires the boundary vertices to a vertex at infinity.

The Matrix Tree Theorem gives us a way to compute the number of
spanning trees in a given graph. However, this does not tell us about the
growth rate. Given an increasing sequence of finite subgraphs, we applied
the Matrix Tree Theorem to each graph to compute the number of spanning
trees. In the examples we considered, this generally grew exponentially in the
number of vertices, so we used a linear regression on a logarithmic scale to
approximate the growth rate of the number of spanning trees. If τn denotes
the number of spanning trees of the nth graph in the sequence, the quantity
we are interested in is

lim
n→∞

1

n
log τn

For example, in spring 2016 we computed the growth rate for the ladder
graph with truncated boundary conditions, as shown in figure 1.4, which was
approximately 1.316957. However, this decimal approximation does not tell
you much about the graph, nor does it give the exact growth rate. In fact,
we proved that the exact growth rate is log(2 +

√
3) using the convenient

symmetry of the ladder graph. We are interested in finding exact growth
rates for more graphs.

Comparing to our experimental growth rate, we can see this is a reason-
able computation. We were able to run these computations for several other
families of graphs to get an estimated decimal approximations of growth
rates. However, since we want to get exact values, these approximations are
mainly used to verify our exact computations rather than to find the exact
growth rates.
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Figure 2.1: Log plot of the number of spanning trees of truncated ladder
graphs.

2.2 Software

The software used in experimentation for this project is Sage, a free open-
source mathematics software that builds on top of many other existing open-
source packages [5]. Additionally, it is not necessary to download any software
on a computer to use Sage. Instead, anyone can use the SageMathCloud at
https://sagemathcloud.com.

2.3 Boundary Conditions and Growth Rate

Given the different boundary conditions discussed in section 1.3, a natural
question is whether or not the growth rate of the number of spanning trees
stays constant under different boundary conditions. Intuitively, as long as
most of the graph is not boundary in any given finite approximation, the
growth rate should be the same. This quarter, we showed a result that made
this precise in all the cases we have been working with.

First, we can consider how adding a single edge to a graph affects the
number of spanning trees with the following proposition.

Proposition 2.3. Let G = (V,E) be a connected graph, and let G′ = (V,E ′)
be obtained from G by adding a single edge, e. Let τ(G) denote the number
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of spanning trees of G. Then

τ(G) ≤ τ(G′) ≤ |E ′|τ(G).

While this is a weak bound, especially when applied repeatedly to ac-
count for adding multiple edges we still get our result since the number of
trees usually grows exponentially. This bound is sufficient in many cases, as
described in the following theorem:

Theorem 2.4. Let {Gn = (Vn, En)} be a sequence of connected graphs. Let
{G′n = (Vn, E

′
n)} be a sequence of graphs obtained by adding some finite

number of edges, mn, to each Gn, such that

lim
n→∞

mn log |E ′n|
|Vn|

= 0.

Then if one of the limits

lim
n→∞

(
1

|Vn|
log τ(Gn)

)
, lim
n→∞

(
1

|Vn|
log τ(G′n)

)
exists, the other one also exists and is equal to it.

The condition

lim
n→∞

mn log |E ′n|
|Vn|

= 0

is not a difficult one to satisfy. In the example of the ladder graphs, the
number of edges added in passing from truncated to periodic boundary con-
ditions is constant (mn = 2), while the number of vertices (Vn) and edges
(E ′n) both grow linearly in n; hence the limit is 0. This example is illustrated
in figure 2.2.

Additionally, while Theorem 2.4 only directly describes adding edges, it is
flexible. We can also add a vertex with a single incident edge (which does not
change the number of spanning trees by itself) to each graph in a sequence,
and then add more edges with Theorem 2.4. This allows us to consider wired
boundary conditions.

2.4 Cayley Graphs

A Cayley graph2 encodes the algebraic structure of a group in a graph using
a set of generating elements of the group that act as coordinates. The vertices

2For more information on Cayley graphs we recommend [3].
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Figure 2.2: Applying Theorem 2.4 to the truncated and periodic ladder
graphs. In this example, mn = 2, Vn = 2n, E ′n = 3n.

of the Cayley graph correspond to group elements and an edge corresponds
to adding one of the generators.

In Spring 2016, we found a formula for counting spanning trees on a
Cayley graph of a finite abelian group.

Theorem 2.5. Let G be a finite abelian group of order n, and let {g1, . . . , gm}
be a set of generators. Then the number of spanning trees on the Cayley graph
is given by

1

n

∏
ρ6=1

(
2m−

(
m∑
i=1

ρ(gi) + ρ(g−1i )

))
where the product is taken over all homomorphisms ρ : G → C× except for
the trivial one sending all elements to 1.

This quarter, we stepped from finite to infinite graphs to obtain growth
rates for Cayley graphs of the groups F×Z, where F is a finite abelian group.
The finite approximations to these graphs with periodic boundary conditions
are themselves Cayley graphs, of the groups F × Z/(n).
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Figure 2.3: An example of the triangle tube graph with periodic boundary.

Theorem 2.6. Let F be a finite abelian group, and let {(f1, k1), . . . , (fm, km)}
be a set of generators of F × Z. Let τ(n) denote the number of spanning
trees of the Cayley graph of F × Z/(n) given by this generating set. For a
homomorphism ρ′ : F → C×, define the polynomial

g(ρ′, x) = 2m− ρ′(f1)xk1 − ρ′(f−11 )x−k1 − . . .− ρ′(fm)xkm − ρ′(f−1m )x−km

Then

lim
n→∞

1

n
log τ(n) =

∑
ρ′

∫ 1

0

log |g(ρ′, e2πiθ)| dθ

where the sum is taken over all homomorphisms ρ′ : F → C×.

The integral in the statement of Theorem 2.6 is also known as the Mahler
measure of the polynomial g(ρ′, x). Mahler measure has some nice proper-
ties. In particular, it also equals the log of the absolute value of the product
of the polynomial’s leading coefficient and its roots of modulus greater than
1[1]. This allows us to get simple exact values for some growth rates.

Example. The Cayley graph of Z/(3) × Z with generators (1, 0), (0, 1) is
a triangular tube. Finite approximations of this graph, Cayley graphs of
Z/(3)× Z/(n), are illustrated in figures 2.3 and 2.4. If ω = e2πi/3 denotes a
third root of unity, the homomorphisms ρ0, ρ1, ρ2 : Z/(3)→ C× are given by
ρ0(1) = 1, ρ1(1) = ω, ρ2(1) = ω2 = ω−1. Then

g(ρ0, x) = 4− 1− 1− x− x−1 = 2− x− x−1

g(ρ1, x) = 4− ω − ω−1 − x− x−1 = 5− x− x−1

g(ρ2, x) = 4− ω−1 − ω − x− x−1 = 5− x− x−1
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Figure 2.4: The triangle tube graph with periodic boundary. This image
shows how periodic boundary makes the end of the approximation ambigu-
ous.

The alternative characterization of Mahler measure gives that∫ 1

0

log |2− e2πiθ − e−2πiθ| dθ = 0∫ 1

0

log |5− e2πiθ − e−2πiθ| dθ = log
5 +
√

21

2

thus the growth rate of the number of spanning trees is

2 log
5 +
√

21

2
.
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3 Future directions

We plan to continue this project and investigate growth rates of spanning
trees particularly in more complicated graphs than the Cayley graphs. The
following sections describe some questions we have started as well as what
we plan to investigate.

3.1 Breaking Symmetry

A natural next step is to investigate graphs that do not have the nice sym-
metry of the Cayley graphs investigated. Figure 3.1 is where we started this
quarter as it loses the vertical symmetry but still has the translational sym-
metry of the Cayley graphs. This translational symmetry should allow us to
use some of the same techniques.

Given a graph on the vertex set {1, . . . , n} × Z with translational sym-
metry (such that (i, s) is adjacent to (j, s+ k) if and only if (i, 0) is adjacent
to (j, k)), define n× n matrices Mk by

(Mk)ij =

{
1 (i, 0) is adjacent to (j, k)

0 otherwise

Additionally, define a diagonal matrix D by

Dii = deg((i, 0))

In the example of Figure 3.1 (labeling the rows 1, 2, 3 from top to bottom),
we have

D =

4 0 0
0 5 0
0 0 3

 , M0 =

0 1 0
1 0 1
0 1 0

 , M1 =

1 0 0
1 1 0
0 0 1


and all other Mk are 0.

Conjecture 3.1. Using the notation described above, the growth rate is∫ 1

0

log | det(D −M0 −M1e
2πiθ −MT

1 e
−2πiθ −M2e

4πiθ −MT
2 e
−4πiθ − . . .)|dθ

11



As above, this integral is the Mahler measure of a polynomial. This gives
us an impressive conjectural growth rate for the graph in figure 3.1:

lim
n→∞

1

n
log τ(n) = log

1

4

25 +
√

357 + 2

√
483 + 25

√
357

2


≈ 3.0866.

Figure 3.1: An example of the graph we investigated that begins to break
the symmetry of the ladder graph. Note that we still have the translational
symmetry of the ladder graph.

3.2 Spanning Forests

Definition 3.2. A forest is a graph that contains no cycles.

Hence a forest is like a tree, but need not be connected.

Definition 3.3. A spanning forest is a forest that contains all the vertices
of a graph G(V,E).

When taking a finite approximation of a spanning tree on an infinite graph
the approximation is not necessarily a spanning tree on that subgraph, but
will be a spanning forest. An example in shown in figure 3.2. As such, in
investigating the interaction between infinite graphs and finite subgraphs, it
is in some ways more natural to consider spanning forests, rather than trees,
on finite approximations.
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Figure 3.2: An illustration of a spanning tree (in green) on the infinite grid
graph showing the darker part as a finite approximation of the grid graph
which gives a spanning forest.
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