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1 Introduction

Three undergraduates participated in this project during Spring quarter
2017: Penny Espinoza, Emily Flanagan, and Hannah Van Wyk. They inves-
tigated integer sequences via their representations as sound. The following
are their reports on their work during this quarter.

2 Progress

2.1 P. Espinoza’s commentary

2.1.1 The long view on primes (A000040) and twin primes (A001097)

An interesting perspective on the sparsity of the primes was achieved by
listening to sounds generated from sequences of large prime numbers. For
example, one can generate a sound that represents primes between 1050 and
1050+1, 000, 000 by generating the sequence, subtracting 1050 from each such
prime, and then creating a sound from the offsets. Sequences beginning as
high as 10600 were generated.

A similar technique was used for twin primes. A graph of twin primes in
the first 15,000,000 integers following powers of 10 from 1010 through 10100

shows the density of twin primes at various points, with only 712 twin primes
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between 10100 and 10100 + 15000000. Later sequences showed that there are
only 42 twin primes in the fifteen million integers starting with 10500.

2.1.2 What is in a spectrogram?

A frequency analysis for sequence A181172 (primes whose base 4 represen-
tation does not contain a 0) showed near-perfect symmetry about half the
Nyquist frequency.

Further exploration revealed that this was true for any subset of the
primes. This led to questions of how frequencies result from a sequence. To
gain traction on answering this question, the sequence of composite numbers
was used, as its waveform is the inverse of the prime number sequence over
the same range of integers, and consequently includes the same frequencies.
The advantage of using composite numbers is that the sequence can be built
up gradually, by starting with only multiples of 2, then adding multiples
of 3 (actually composites congruent to 3 mod 6, since any multiple of 6
was already included in the multiples of 2), then new multiples of 5, etc.
The frequency analyses for multiples of the first few primes is shown below,
followed by a frequency analysis of all composites between 1 and 1,000,000.
Note the scale changes in these graphs.
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multiples of 2 or 3 multiples of 2, 3, or 5

multiples of 2, 3, 5, or 7 all composites

In an attempt to figure out exactly how frequencies come to be, sounds
were also created for strictly periodic sequences that included other subsets
of composite numbers. For example, adding multiples of 5 to the composites
actually only adds composites congruent to 5 or 25 mod 30 (all other multiples
of 5 are already present because they are multiples of 2 or 3). Below are
frequency analyses for composites with multiples of 2, 3, or 5, alongside
the purely periodic sequence for numbers congruent to 5 mod 30, and for
just those integers added when multiples of 5 are included in the composite
sequence. Note that all frequencies for 5 mod 30 are of equal strength.

multiples of 2, 3, or 5 5 mod 30 5 or 25 mod 30

Further understanding may be gained by trying to answer the following
questions:

• Why are the frequencies symmetric about half the Nyquist frequency?

• How can the amplitudes for each frequency be determined?

2.2 E. Flanagan’s commentary

2.2.1 Beatty Sequence of Sqrt 2

A Beatty Sequence is defined as the floor of some irrational number times
a rational number. When making sounds, the Beatty sequences we are in-
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terested in are those in which the irrational number is greater than 1, as to
create a strictly increasing sequence. The Beatty sequence we worked with
the most this quarter was n

√
2, with n being an integer. More specifically,

we investigated various approximations of the irrational
√

2.

One way of approximating an irrational number is the method is that of
continued fractions. Continued fractions are an expression of the form

a0 +
b1

a1 + b2
a2+

b3
a3+...

For
√

2, the approximation is of the form

1 +
1

2 + 1
2+ 1

2+...

This yields a sequence of integers beginning 1, 3
2
, 7
5
, 17
12
, 41
29
, 99
70
, . . .. The use

of a continuted fraction is advantageous because they produce the ”closest”
value to the irrational number, and thus converge faster to the irrational than
truncation of decimals. Using these approximations of

√
2, we generated a

Beatty sequence, and converted it into a sound. Spectrogram below demon-
strates the convergence of these sequences to the ”true” sound of the Beatty
sequence of n

√
2. Every two seconds, the next approximation is used. The

last 2 second block of the spectrogram is the ”true” sequence. It is impor-
tant to note that the ”true” sequence is in itself an approximation, because
it would be impossible to compute the sequence using all the infinite digits
of an irrational number.
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We can see that as the continued fraction approximation gets more pre-
cise, the fundamental frequency decreases, causing the sound to become closer
to the ”true” Beatty sequence. Interestingly, after 12 seconds, or 6 iterations
of the continued fraction, the change in frequencies caused by the change in
approximation is not detected by the human ear.

2.3 Hannah Van Wyk’s commentary

At the beginning of the quarter, I focused on using Fourier analysis to make
basic sequences such as number congruent to 0 (mod 10), or numbers con-
gruent to 0,3 or 6 (mod 10). After making these sequences and looking at
the spectrograms and waveforms, I found the sequences made from the in-
teger sequences and the sequences made from Fourier analysis were almost
completely similar (figures 1 and 2). However, the waveforms looked very
different when zoomed into (figures 3 and 4).
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Figure 1: Spectrogram of integers congruent to 0 (mod 10). Frequency plot-
ted against time.

Figure 2: Spectrogram of integers congruent to 0 (mod 10) made from Fourier
analysis

Overall, I was surprised by how similar the sounds made from Fourier
were to the sounds made from using the actual files of the numbers. Both
the sound files and spectrograms were undistinguishable from each other.

Throughout the quarter, I continued researching the sound of bn log(n)c.
I found a sound that had a very similar spectrogram, which was bn1.01c
(Figure 6).

One thing I observed that was interesting about these spectrograms,
is that at certain points, the pink lines in the background seem to con-
verge/cross. For example, this can be seen at 8.6, and 21.4 seconds (Figure
7).

I now have concluded that at these instants, the sound of floor(n log(n))
will sound like the sound of the multiples of some integer n. I also zoomed in
the waveform of this sequence, and concluded that the terms in the sequence

Figure 3: Waveform of integers congruent to 0 (mod 10)
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Figure 4: Waveform of integers congruent to 0 (mod 10) made from Fourier
analysis

Figure 5: Spectrogram of bn log nc

Figure 6: Spectrogram of bn1.01c

Figure 7: Spectrogram of bn log nc at 8.6 and 21.4 seconds
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Figure 8: Waveform of bn log nc near 8.6 seconds

indeed are increasing by the same amount when these points of convergence
occur. For example, at 8.6 seconds each term is increasing by 12. We can
see this both by zooming in on the waveform at this instant, and we see in
figure 8, that each term is 12 more than the last:

However, since this increase of 12 between each term only happens briefly,
floor(n log(n)) will only momentarily sound like the sequence of the multiples
of 12. In the future, I would like to still go more in depth with the sequence
bn log nc. Perhaps we would be able to combine what I learned about Fourier
analysis this quarter with my discoveries from the spectrogram of bn log nc
to be able to reach a concrete answer as to why sequences like bn log nc and
bn1.01c have such a unique sound.
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