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1 Introduction

Given a sequence of real numbers, it seems reasonable to expect that the first digits of its terms will occur
with equal frequencies. However, in reality, this is far from the case: in many naturally occurring sequence of
numbers, it is more likely for the leading digit to be smaller. Benford’s law provides a precise mathematical
formulation for this phenomenon of first digit bias:

Definition 1. Let {an} be a sequence of real numbers and an = 10km where k ∈ Z and m ∈ R such that
1 ≤ m < 10. Furthermore, let M(an) = m. If

P{1 ≤M(an) ≤ d} = log10 (d)

for all 1 ≤ d < 10, then {an} satisfies Benford’s law. If {an} meets this condition, then we call {an} a
Benford sequence.

In particular, Benford’s law states that the frequency of terms in a sequence with leading digit d will be

P{d ≤M(an) ≤ d+ 1} = P{1 ≤M(an) ≤ d+ 1} − P{1 ≤M(an) ≤ d} = log10

(
1 +

1

d

)
.

In this paper, we explore whether certain recurrence relations satisfy Benford’s law. We prove that the
Fibonacci sequence follows Benford’s law, generalizing our findings to other families of linear recurrences.
We investigate if the terms and convergents of certain simple continued fractions follow Benford’s Law. We
find an explicit formula for the recurrence relation of the numerators and denominators of the convergents of
quadratic irrationals to show these sequences follow Benford’s Law. Furthermore, we make use of the Gauss-
Kuzmin distribution and the Levy’s constant to make statements about all simple continued fractions, except
for a set of measure zero, concerning Benford’s Law. Lastly, we investigate the simple continued fractions of
certain transcendentals to make conjectures related to Benford’s Law.

2 Equidistribution and Benford’s Law

We begin by establishing some preliminary results on Benford’s law that will allow us to prove whether
certain sequences are Benford. One particularly useful concept that relates to Benford’s law is that of
equidistribution, which measures whether a sequence is evenly distributed within a given interval.

Definition 2. A sequence {an} is equidistributed modulo 1 if for any subinterval [c, d] ∈ [0, 1),

lim
N→∞

#{an ∈ [c, d] : n ≤ N}
N

= d− c.

Theorem 1 ([KM05]). The sequence {log an} is equidistributed modulo 1 if and only if the sequence {an}
follows Benford’s law.

In order to prove that a sequence {an} follows Benford’s law, Proposition 1 tells us that we only need to
show that the logs of the terms are equidistributed modulo 1. There exist two useful theorems that tell us
when sequences are equidistributed in such a manner, whose proofs can be found in [KN74]:
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Theorem 2 (Weyl’s Criterion). The sequence {an} is equidistributed modulo 1 if and only if for all nonzero
integers h,

lim
N→∞

1

N

N∑
n=1

e2πihan = 0.

Theorem 3 (Difference Theorem). If limn→∞ an − an−1 = α, where α is irrational, then {an} is equidis-
tributed modulo 1.

The difference theorem is particularly useful in form of the following corollaries:

Corollary 1. For a given sequence {an}, if limn→∞ log an − log an−1 = α, where α is irrational, then
{log an} is equidistributed modulo 1.

Proof. The proof is immediate from substituting log an for an. �

Corollary 2. For any irrational α, the sequence {an = nα} is equidistributed modulo 1.

Proof. If an = nα, then limn→∞ nα− (n− 1)α = α, so {an} is equidistributed modulo 1. �

When given a certain sequence, it is often convenient to consider related sequences that are easier to work
with. Using Weyl’s criterion, we can determine whether a sequence follows Benford’s law given that a related
sequence is Benford. We first show that the sequence created by multiplying each term of a Benford sequence
by a constant creates another Benford sequence:

Proposition 1. If the sequence an is equidistributed modulo 1, then the sequence bn = an + C is equidis-
itributed modulo 1.

Proof. We compute

lim
N→∞

1

N

N∑
n=1

e2πihbn = lim
N→∞

1

N

N∑
n=1

e2πih(an+C) =
(
e2πihC

)(
lim
N→∞

1

N

N∑
n=1

e2πihan

)
.

Since an is equidistributed modulo 1, we can substitute

lim
N→∞

1

N

N∑
n=1

e2πihan = 0

to obtain

lim
N→∞

1

N

N∑
n=1

e2πihbn =
(
e2πihC

)
(0) = 0,

as desired. Thus bn satisfies Weyl’s criterion and is equidistributed modulo 1. �

Proposition 2. Let {an} be a sequence following Benford’s law. Then if {bn} = C{an} where C > 0, {bn}
follows Benford’s law.

Proof. If {bn}∞n=1 = C{an}∞n=1, then

{log bn}∞n=1 = log(C{an}∞n=1) = logC + {log an}∞n=1.

Since {an}∞n=1 follows Benford’s law, {log an}∞n=1 is equidistributed modulo 1. By Proposition 2, {log bn}∞n=1

is equidistributed modulo 1 and thus {bn}∞n=1 follows Benford’s law. �

In addition to considering sequences whose individual terms are based upon a Benford sequence, we can
show that sequences that differ from a Benford sequence by a finite number of terms remain Benford.
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Proposition 3. Consider a sequence {bn} formed by adding or removing a finite number of terms from the
sequence {an}. Then {an} follows Benford’s law if and only if {bn} follows Benford’s law.

Proof. Without loss of generality, let {cn}kn=1 be removed and let {dn}jn=1 be added to {an}∞n=1 to form
{bn}∞n=1. Evaluating the sum with the Weyl criterion for {bn}∞n=1, we obtain

lim
N→∞

1

N

N∑
n=1

e2πih log bn = lim
N→∞

1

N

(
N∑
n=1

e2πih log an −
k∑

n=1

e2πih log cn +

j∑
n=1

e2πih log dn

)

= lim
N→∞

1

N

N∑
n=1

e2πih log an − lim
N→∞

1

N

k∑
n=1

e2πih log cn + lim
N→∞

1

N

j∑
n=1

e2πih log dn

= lim
N→∞

1

N

N∑
n=1

e2πih log an .

From here, we see that {log an}∞n=1 being equidistributed modulo 1 implies that {log bn}∞n=1 is equidistributed
modulo 1, and vice versa. Thus, {bn}∞n=1 follows Benford’s law if and only if {an}∞n=1 follows Benford’s
law. �

Furthermore, a combination of Benford sequences creates another Benford sequence. This technique will be
especially useful when we consider the recurrence relations of continued fractions, which we will partition
into subsequences satisfying linear recurrences.

Definition 3. Let {an}∞n=1 be a sequence of infinite length. The sequences s1, s2, . . . , sk form a partition of
{an} if each term of {an} is contained in exactly one of s1, s2, . . . , sk.

Proposition 4. If s1, s2, . . . , sk form a partition of {an}∞n=1 and each of s1, s2, . . . , sk satisfies Benford’s
law, then {an}∞n=1 satisfies Benford’s law.

Proof. To prove our result, we evaluate Weyl’s criterion:

lim
N→∞

1

N

N∑
n=1

e2πih log an = lim
N→∞

1

N

k∑
i=1

N∑
n=1

e2πih log si,n =

k∑
i=1

lim
N→∞

1

N

N∑
n=1

e2πih log si,n

Since every si satisifies Benford’s law, log si is equidistributed modulo 1 for all i from 1 to k, and thus

lim
N→∞

1

N

N∑
n=1

e2πih log si,n = 0

for every si. As a result,

lim
N→∞

1

N

N∑
n=1

e2πih log an = 0,

so log an satisfies Weyl’s criterion and is equidistributed modulo 1. Thus {an} satisfies Benford’s law. �

Lastly, we demonstrate that a sequence whose limit approaches a Benford sequence is also Benford.

Proposition 5. Let {an}∞n=1 be a sequence follows Benford’s law. Furthermore, let {bn}∞n=1 be a sequence
such that limn→∞ bn = an. Then {an}∞n=1 also follows Benford’s law.

Proof. Let bn − an = εn. We have
lim
n→∞

εn = 0, bn = an + εn.

When n is sufficiently large, bn ≈ an and the first digits of the sequences are the same for most n, unless
an, bn ≈ 10x for some x ∈ N. Thus, there are a finite number of terms in bn which do not have the same
leading digit as the corresponding term in an. By Proposition 3 these terms and their corresponding terms
in an can be removed without changing whether or not the sequences follow Benford’s law. Thus, {an}∞n=1

is still a Benford sequence, and every term in the corresponding {bn}∞n=1 sequence has the same first digit,
and thus {bn}∞n=1 also follows Benford’s law. �
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3 Linear Recurrences

From Proposition 2 and Corollary 2 to the difference theorem, we see that all geometric sequences of the
form arn satisfy Benford’s law when r is irrational. The Benford nature of geometric sequences motivates
us to investigate whether linear recurrences of the form an = c1an−1 + c2an−2 + ...+ ckan−k for constants ci
follow Benford’s law, because their closed form consists of sums of geometric series:

Definition 4. The characteristic polynomial of the recurrence an = c1an−1 + c2an−2 + ... + ckan−k is the
polynomial

rk −
k∑
i=1

cir
k−i

Proposition 6. Each linear recurrence {an} of order k can be written in a closed form. If the roots ri of
the characteristic polynomial for an are all distinct, then an = C1r

n
1 +C2r

n
2 + ...+Ckr

n
k for some constants

Ci determined by the initial values of the recurrence. If the characteristic polynomial has repeated roots

r1 = r2 = ... = rγ , then an = rnγ
γ∑
i=1

Cin
γ−i +

k∑
i=γ+1

Ckr
n
i .

3.1 Fibonacci Numbers

Proposition 7. The Fibonacci sequence with terms Fn = Fn−1+Fn+2 and F0 = 0, F1 = 1 satisfies Benford’s
law.

Proof. Let Fn be the nth Fibonacci number. We have

log d ≤ frac(logFn) ≤ log(d+ 1),

where d denotes the leading digit of Fn.

It is well known that the closed form formula for the sequence Fn is

Fn =
1√
5

(φn − (
1−
√

5

2
)n).

From this, we see that

logFn = log
1√
5

+ log(φn + (
1−
√

5

2
)n)

= log
1√
5

+ log φn + log(1 + (
1−
√

5

1 +
√

5
)n)

= n log φ+ c+ E,

where c = log 1√
5

and E = log(1 + ( 1−
√
5

1+
√
5
)n), with limn→∞E = 0.

Using Weyl’s criterion, we want to verify whether

lim
N→∞

1

N

N∑
n=1

e2πikfrac(logFn) = 0.

As n→∞, frac(logFn)→ frac(n log φ). Since log φ is irrational, it is equidistributed by Corollary 2 to the

difference theorem. Then
N∑
n=1

e2πikfrac(logFn) stops growing as N →∞, but the denominator N continues to

grow. Therefore Weyl’s criterion is satisfied and the Fibonacci sequence is Benford. �
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3.2 Linear Recurrences with a Maximal Root

We can generalize our findings about Benford’s Law for Fibonacci numbers to other linear recurrences with
a maximal root.

Proposition 8. Let an = c1r
n
1 + c2r

n
2 + ...+ ckr

n
k , where |r1| > |ri| for all 2 ≤ i ≤ k. If log r1 is irrational

then {an} satisfies Benford’s law.

Proof. We have

log d ≤ {log an} ≤ log(d+ 1)

We can write that

{log an} = {log(c1r
n
1 + c2r

n
2 + ...+ ckr

n
k )}

= {log(c1r
n
1 ) + log(1 +

c2
c1

r2
r1

n
+ ...+

ck
c1

rk
r1

n
)}

= {n log r1 + log c1 + E}

where E = log(1 + c2
c1
r2
r1

n + ...+ ck
c1
rk
r1

n). We can see that | rir1 | < 1 for all i such that 2 ≤ i ≤ k, so

lim
n→∞

ri
r1

n
= 0→ lim

n→∞
E = 0

Using Weyl’s criterion, we want to verify whether

lim
n→∞

1

N

N∑
n=1

e2πik{log an}

As n → ∞, {log an} = {n log r1 + log c1 + E} → {n log r1 + log(c1)} which is known to be equidistributed

(the constant log c1 does not affect equidistribution) because logr1 is irrational. Then
N∑
n=1

e2πik{log an} stops

growing as N → ∞, but the denominator N continues to grow. Therefore Weyl’s criterion is satisfied, and
{an} satisfies Benford’s law. �

Proposition 9. Let an =
k∑
i=1

βiα
n
i where |α1| ≤ |α2| ≤ |α3| ≤ . . . ≤ |αk−1| < |αk| and logαk is irrational.

Furthermore, let P (n) =
j∑
i=1

γin
i where γj 6= 0. Then bn = P (n)an follows Benford’s law.

Proof. We proceed by showing log bn is equidistributed modulo 1:

lim
n→∞

log bn − log bn−1 = log
bn
bn−1

= lim
n→∞

log
anP (n)

an−1P (n− 1)
= lim
n→∞

log
an
an−1

= logαk.

Since logαk is irrational, the sequence log bn is equidistributed modulo 1, so bn follows Benford’s law. �
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3.3 Positive Second Order Linear Recurrences

Even when the closed form of the recurrence does not have a maximal root, the recurrence can still satisfy
Benford’s law in some cases. We proceed to show that any positive second-order linear recurrence follows
Benford’s law, whether its roots are distinct or not.

Proposition 10. Let an = c1an−1+c2an−2 where c1, c2 ∈ R and an ∈ R, an > 0. Then an follows Benford’s
law.

Proof. Consider the roots, r1, r2 of the characteristic polynomial of an. We will show that r1, r2 ∈ R
through proof by contradiction. Assume that r1, r2 6∈ R. By the complex conjugate root theorem, r2 = r1.
Let r1 = reiθ and r2 = re−iθ where r = |r1| = |r2| and θ 6= 0. Then an = α1r

n
1 + α2r

n
2 . Since an ∈ R,

α1r
neinθ+α2r

ne−inθ ∈ R, which implies Im(α1r
neinθ+α2r

ne−inθ) = 0. Since this means rn(α1−α2) sinnθ =
0, we have α1 = α2. As a result, an can be written as an = 2α1r

n cosnθ.

But since an > 0, cosnθ > 0 for all natural numbers n. Thus 2πk− π
2 < nθ < 2πk+ π

2 for some k ∈ Z. Since
cosnθ > 0 for all natural numbers n, cos θ > 0, which implies that −π2 < θ < π

2 . Suppose 0 < θ < π
2 . Let j be

the largest natural number such that 0 < jθ < π
2 Then π

2 ≤ (j+ 1)θ < π which implies −1 < cos(j+ 1)θ ≤ 0
implying cosnθ 6> 0 for all natural numbers n, a contradiction. A similar argument holds if −π2 < θ < 0.
Thus cosnθ cannot be positive for all natural numbers n and θ 6= 0 and we have a contradiction. Thus
r1, r2 ∈ R.

If r1 = r2, then an = (α1 + α2)rn1 which follows Benford’s law by Proposition 3.2. If r1 = −r2 then an =
(α1+α2)rn1 for even n and an = (α1−α2)rn1 for odd n. Since an > 0, an 6= 0 and thus α1+α2 6= 0, α1−α2 6= 0
and an is a combination of two Benford sequences. By Proposition 4, an follows Benford’s law. All other
cases are covered in Proposition 8. Thus an follows Benford’s law if an = c1an−1 + c2an−2 where c1, c2 ∈ R
and an ∈ R, an > 0 . �

4 Continued Fractions

An interesting variation on linear recurrences is the sequence of terms and convergents of a continued fraction
α ∈ R. The continued fraction of α = [a1, a2, a3...] takes the form

α = a1 +
1

a2 +
1

a3 +
1

· · ·

where each natural number ai represents the greatest integer within its corresponding fraction. Thus, we
see that the sequence of terms {an} of the continued fraction is given by the recurrence

an =

⌊
1

frac(an)

⌋
.

Closely related to the terms a1, a2, ..., an are the values Pn and Qn, which respectively represent the numer-
ator and denominator of the nth convergent [a1, a2, a3, ..., an] of α. They, too, can be calculated through
well-known recursions:

Pn = anPn−1 + Pn−2 where P0 = 1 and P1 = a1

Qn = anQn−1 +Qn−2 where Q0 = 0 and Q1 = 1

While the recursions for {Pn} and {Qn} are not linear since the terms ai can vary, their general structure
resembles the second-order linear recurrences discussed in the previous section. In fact, as we will see later,
we can use these recurrences to create formulas for subsequences of {Pn} and {Qn} that are second-order
linear recurrences. For now, however, we will use them to establish another recurrence that relates the terms
of a continued fraction to its convergents:
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Proposition 11. Let α = [a1, a2, . . . , an] where n can be ∞. Then

k∏
i=1

(
ai 1
1 0

)
=

(
Pk Pk−1
Qk Qk−1.

)
Proof. We will prove this using the principle of induction. For the base case, k = 1,

1∏
i=1

(
ai 1
1 0

)
=

(
ai 1
1 0

)
=

(
P1 P0

Q1 Q0

)
Thus,

k∏
i=1

(
ai 1
1 0

)
=

(
Pk Pk−1
Qk Qk−1

)
is true for the base case. Assume it is true for k = j.We will show it is also true for k = j + 1.

j+1∏
i=1

(
ai 1
1 0

)
=

(
j∏
i=1

(
ai 1
1 0

))(
aj+1 1

1 0

)
=

(
Pj Pj−1
Qj Qj−1

)(
aj+1 1

1 0

)
=

(
Pjaj+1 + Pj−1 Pj
Qjaj+1 +Qj−1 Qj

)
Using the recursions for Pk and Qk, this matrix is simply(

Pj+1 Pj
Qj+1 Qj

)
Thus

k∏
i=1

(
ai 1
1 0

)
=

(
Pk Pk−1
Qk Qk−1

)
holds for k = j + 1 and by the principle of induction holds for all k ∈ N. �

By considering these recursions, we proceed to investigate whether the terms and convergents of different
classes of continued fractions satisfy Benford’s law.

4.1 Continued Fractions of Rationals

The continued fractions of rational numbers are among the simplest to work with, since they have a finite
number of terms. Here, we see how this finiteness affects whether their terms and convergents satisfy
Benford’s law.

Proposition 12. If α is rational, then its continued fraction expansion is finite.

Proof. Let α = P
Q for relatively prime P,Q ∈ N. To construct the terms a1, a2, ..., an of α, we apply Euclid’s

algorithm:

P = a1Q+ r1

Q = a2r1 + r2

...

rn = anrn+1 + 0.

Because there are a finite number of natural numbers less than P by well-ordering, Euclid’s algorithm will
terminate, resulting in a finite number of terms ai. �

Proposition 13. If α is rational, then the terms of its continued fraction [a1, a2, ..., an] do not satisfy
Benford’s law.
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Proof. Let α be rational so that it has a finite number of terms in its continued fraction expansion by
Proposition 12. Let there be n terms in the continued fraction expansion of α, and of these n terms, let j
have a leading digit of 1. Then the probability of 1 being the leading digit of a term in the sequence {ai}ni=1

is j
n which is rational. But by Benford’s law, the probability that 1 is the leading digit of a term in a Benford

sequence is log 2, which is irrational. Thus {ai}ni=1 does not follow Benford’s law. �

Since rational α have a finite number of terms in their continued fractions, they will also have a finite number
of convergents. By similar reasoning to Proposition 13, it follows that the finite sequences {Pn} and {Qn}
corresponding to such α also fail to satisfy Benford’s law. Thus, if Pn and Qn were to satisfy Benford’s Law,
α would have to have a continued fraction expansion with an infinite number of terms. Since both Pn and
Qn do not follow Benford’s Law for rationals, a natural question would be if a necessary condition for Pn to
follow Benford’s law would be Qn following Benford’s Law. This statement is in fact true.

Proposition 14. {Pn}∞n=1 follows Benford’s Law if and only if {Qn}∞n=1 follows Benford’s Law.

Proof. We first prove the forward direction wanting to show that {Pn}∞n=1 if {Qn}∞n=1 satisfies Benford’s
Law. We have that

lim
n→∞

Pn
Qn

= α

which means that
lim
n→∞

Pn = Qnα

But since {Qn}∞n=1 follows Benford’s Law, by Proposition 2 {Qnα}∞n=1 follows Benford’s law and by Propo-
sition 5 {Pn}∞n=1 follows Benford’s Law. Similarly for the reverse direction, we have

lim
n→∞

Pn
1

α
= Qn

and the proof is the same as the forward direction.
�

4.2 Continued Fractions of Quadratic Irrationals

Quadratic irrationals α, which satisfy the equation aα2 + bα + c = 0, are similar to rationals in the sense
that both of their continued fractions have a finite number of different terms. Lagrange proved that the
continued fractions of all quadratic irrationals are periodic; that is, they can be written in the form α =
[a1, a2, . . . , ak, ak+1, ak+2, . . . , an+k]. As it turns out, this fact is key to determining whether the terms and
the convergents of such irrationals follow Benford’s law.

Proposition 15. If α is a quadratic irrational, then the terms of its continued fraction do not satisfy
Benford’s law.

Proof. Since α is a quadratic irrational, α = [a1, a2, . . . , ak, ak+1, ak+2, . . . , an+k]. Consider the sequence
{ai}n+ki=k+1. Let j of these terms have a leading digit of 1. Thus the probability of 1 being a leading digit of a

term in the sequence {ai}n+ki=k+1 is j
n . Now consider the purely periodic sequence {ai}∞i=k+1. The probability

of 1 being a leading digit of a term in the sequence is j
n , which is a rational number. If {ai}∞i=k+1 followed

Benford’s law, the probability of 1 being a leading digit of a term in the sequence is log 2 which is irrational.
Thus {ai}∞i=k+1 does not follow Benford’s law. The sequence {ai}∞i=1 is simply the sequence formed by adding
a finite number of terms (k terms) to the sequence {ai}∞i=k+1. Since {ai}∞i=k+1 does not follow Benford’s
law, by Proposition 3 {ai}∞i=1 also does not follow Benford’s law. �

While the terms of the continued fraction of a quadratic irrational do not satisfy Benford’s law, the corre-
sponding convergents do. In order to prove this, we will first consider the convergents of an α with a purely
periodic continued fraction expansion.

Proposition 16. Let α = [a1, a2, . . . , an]. Then the sequence of convergent numerators {Pj}∞j=1 and the
sequence of convergent denominators {Qj}∞j=1 both satisfy Benford’s Law.
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We provide two separate proofs of this statement. In each proof, we partition {Pn} and {Qn} into subse-
quences {Pnk+i}∞n=1 and {Qnk+i}∞n=1 for each integer 1 ≤ i ≤ k and demonstrate that each subsequence is a
linear recurrence satisfying Benford’s law. In the first proof, we use an algorithm to show that such a linear
recurrence exists, while in the second, we use linear algebra to find an explicit formula for the recurrence.

Proof 1. From Proposition 4, we reduce the problem to showing that each {Pkn+i}∞k=1 is a second order
linear recurrence. First we introduce new notation. Given a sequence x0, x1, x2, ..., we write xc0k+d0 →
(xc1k+d1 , xc2k+d2 , ..., xcjk+dj ) if, for some choice of c0, c1, ..., cj and d0, d1, ..., dj , xc0k+d0 is a linear recurrence
in terms of xc1k+d1 , xc2k+d2 , ..., xcjk+dj for all values of k. From the recurrence Pk = akPk−1 +Pk−2 and the
α being periodic with period n, we have

Pkn+i → (Pkn+i−1, Pkn+i−2)

Pkn+i → (Pkn+i+1, Pkn+i−1)

Pkn+i → (Pkn+i+1, Pkn+i+2).

We want to show that Pkn+i → (P(k−1)n+i, P(k−2)n+i). Using our relations, we find that

Pkn+i → (Pkn+i−1, Pkn+i−2)

→ (Pkn+i−2, Pkn+i−3, Pkn+i−2)→ (Pkn+i−2, Pkn+i−3)

→ (Pkn+i−3, Pkn+i−4).

Continuing this algorithm, we obtain

Pkn+i → (Pkn+i−n, Pkn+i−(n+1))→ (P(k−1)n+i, P(k−1)n+i−1).

To complete our algorithm, we show that Pkn+i−1 → (Pkn+i, P(k−1)n+i) by induction. As our base case, we
know that

Pkn+i−1 → (Pkn+i, Pkn+i−2).

Assuming that Pkn+i−1 → (Pkn+i, Pkn+i−r), we can perform a series of moves to obtain Pkn+i−1 →
(Pkn+i, Pkn+i−(r+1)):

Pkn+i−1 → (Pkn+i, Pkn+i−r)

→ (Pkn+i, Pkn+i−(r+1), Pkn+i−(r−1))

→ (Pkn+i, Pkn+i−(r+1), Pkn+i−(r−2), Pkn+i−(r−3)).

Repeatedly using Pk → (Pk−1, Pk−2) gives us

Pkn+i−1 → (Pkn+i, Pkn+i−(r+1), Pkn+i−(r−(r−1)), Pkn+i−(r−r)) → (Pkn+i, Pkn+i−(r+1), Pkn+i−1, Pkn+i)

→ (Pkn+i, Pkn+i−(r+1)).

Having established this inductive step, we see that Pkn+i−1 → (Pkn+i, Pkn+i−r) is true for all r. If we let
r = n, we obtain Pkn+i−1 → (Pkn+i, P(k−1)n+i). Substituting P(k−1)n+i−1 → (P(k−1)n+i, P(k−2)n+i) into
Pkn+i → (P(k−1)n+i, P(k−1)n+i−1), we obtain Pkn+i → (P(k−1)n+i, P(k−2)n+i).

Because α has period n, {Pkn+i}∞k=1 is a second order linear recurrence for each 1 ≤ i ≤ n. Further-
more, since each Pi is positive, {Pkn+i}∞k=1 satisfies Benford’s law by Proposition 10. Thus {Pk}∞k=1 satisfies
Benford’s law by Proposition 4.

Proof 2. Once again, we show that {Pni+k}∞k=0 and {Qni+k}∞k=0 are second order linear recurrences. By
Proposition 11

k+2n∏
i=1

(
ai 1
1 0

)
=

(
Pk+2n Pk+2n−1
Qk+2n Qk+2n−1

)

9



Also, by the associativity of matrix multiplication,

k+2n∏
i=1

(
ai 1
1 0

)
= (

k∏
i=1

(
ai 1
1 0

)
)(

k+2n∏
i=k+1

(
ai 1
1 0

)
)

Since {ai}∞i=1 is periodic with period n,

= (

k∏
i=1

(
ai 1
1 0

)
)(

n∏
i=1

(
ai 1
1 0

)
)2

Similarly,
k+n∏
i=1

(
ai 1
1 0

)
= (

k∏
i=1

(
ai 1
1 0

)
)(

n∏
i=1

(
ai 1
1 0

)
)

Let
k∏
i=1

(
ai 1
1 0

)
=

(
α1 α2

α3 α4

)
and

n∏
i=1

(
ai 1
1 0

)
=

(
β1 β2
β3 β4

)
Thus

k+n∏
i=1

(
ai 1
1 0

)
=

(
α1 α2

α3 α4

)(
β1 β2
β3 β4

)
=

(
α1β1 + α2β3 α1β2 + α2β4
α3β1 + α4β3 α3β2 + α4β4

)
and

k+2n∏
i=1

(
ai 1
1 0

)
=

(
α1 α2

α3 α4

)(
β1 β2
β3 β4

)2

=

(
α1β2

1 + α1β2β3 + α2β1β3 + α2β3β4 α1β1β2 + α1β2β4 + α2β2β3 + α2β2
4

α3β2
1 + α3β2β3 + α4β1β3 + α4β3β4 α3β1β2 + α3β2β4 + α4β2β3 + α4β2

4

)
Since

k∏
i=1

(
ai 1
1 0

)
=

(
α1 α2

α3 α4

)
varies with k, α1, α2, α3, α4 vary with k.

n∏
i=1

(
ai 1
1 0

)
=

(
β1 β2
β3 β4

)
is a constant, and thus β1, β2, β3, β4 are constants too. Since we want to show {Pni+k}∞i=0 and {Qni+k}∞i=0

are linear recurrences we want to find x, y in terms of β1, β2, β3, β4 such that

k+2n∏
i=1

(
ai 1
1 0

)
= x

k∏
i=1

(
ai 1
1 0

)
+ y

k+n∏
i=1

(
ai 1
1 0

)
which is equivalent to finding x, y in terms of β1, β2, β3, β4 such that

(
α1β

2
1 + α1β2β3 + α2β1β3 + α2β3β4 α1β1β2 + α1β2β4 + α2β2β3 + α2β

2
4

α3β
2
1 + α3β2β3 + α4β1β3 + α4β3β4 α3β1β2 + α3β2β4 + α4β2β3 + α4β

2
4

)
= x

(
α1 α2

α3 α4

)
+ y

(
α1β1 + α2β3 α1β2 + α2β4

α3β1 + α4β3 α3β2 + α4β4

)

We algebraically solve x = β2β3 − β1β4 and y = β1 + β4. By Proposition 11,

n∏
i=1

(
ai 1
1 0

)
=

(
Pn Pn−1
Qn Qn−1

)
=

(
β1 β2
β3 β4

)
and as a result

10



x = β2β3 − β1β4 = Pn−1Qn − PnQn−1 = (−1)n+1

y = β1 + β4 = Pn +Qn−1

→ P2n+k = (Pn +Qn−1)Pn+k + (−1)n+1Pk

→ Q2n+k = (Pn +Qn−1)Qn+k + (−1)n+1Qk

Thus, both {Pni+k}∞i=0 and {Qni+k}∞i=0 are second order linear recurrences. Since they are both positive
second order linear recurrences, by Proposition 10, {Pni+k}∞i=0 and {Qni+k}∞i=0 follow Benford’s law. Thus
{Pk}∞k=1 and {Qk}∞k=1 satisfy Benford’s law by Proposition 4.

We can extend the previous result to quadratic irrationals with any periodic continued fraction expansion.
To do so, we show that the non-periodic terms of an eventually periodic continued fraction generate a finite
number of convergents that are not Benford, meaning that the overall sequence of convergents remains
Benford.

Proposition 17. Let α = [a1, a2, . . . , ak, ak+1, . . . , an+k]. Then {Pj}∞j=1 and {Qj}∞j=1 satisfy Benford’s law.

Proof. Let Aj and Bj be the numerator and denominator, respectively, of the jth convergent of β =
[ak+1, ak+2, . . . , an+k]. Furthermore, let Pj and Qj be the numerator and denominator, respectively, of
the jth convergent of [a1, a2, . . . , ak, ak+1, . . . , an+k]. Using the principle of strong induction, it will be
shown that Pk+j = AjPk +BjPk−1 for j ∈ N. Consider the base case, j = 1.

Pk+1 = ak+1Pk + Pk−1 = A1Pk +B1Pk−1

Thus Pk+j = AjPk + BjPk−1 is true for j = 1. Assume Pk+j = AjPk + BjPk−1 is true for j = 1, 2, . . . ,m.
Then,

Pk+m+1 = ak+m+1Pk+m + Pk+m−1

= ak+m+1(AmPk +BmPk−1) + (Am−1Pk +Bm−1Pk−1)

= (ak+m+1Aj +Am−1)Pk + (ak+m+1Bj +Bm−1)Pk−1

= Ak+m+1Pk +Bk+m+1Pk−1

Thus Pk+j = AjPk + BjPk−1 holds for j = m + 1 and by the principle of strong induction, Pk+j =
AjPk +BjPk−1 holds for all j ∈ N. But

lim
j→∞

Aj
Bj

= β

so
lim
j→∞

Pk+j = BjβPk +BjPk−1 = Bj(βPk + Pk−1)

But by Proposition 16 Bj follows Benford’s law, and 0 < β,Pk, Pk−1 which means βPk +Pk−1 > 0 and thus
Bj(βPk + Pk−1) follows Benford’s law by Proposition 2 and by Proposition 5 {Pk+j}∞j=1 follows Benford’s

law. Thus adding {Pj}kj=1, a finite number of terms, to the sequence {Pk+j}∞j=1 creates a new sequence
{Pj}∞j=1 which follows Benford’s law by Proposition 3. By Proposition 14 {Qj}∞j=1 also follows Benford’s
law. �

To prove that {Pj}∞j=1 and {Qj}∞j=1 followed Benford’s law for purely periodic continued fractions, we found
an explicit formula for the recurrence relations for the convergent numerators and denominators. We can
extend this result to any periodic continued fraction.

Proposition 18. Let α = [a1, a2, . . . , ak, ak+1, . . . , an+k]. Then

Pk+j+2n = (−1k(Pn+kQk−1 − Pn+k−1Qk + PkQn+k−1 − Pk−1Qn+k))Pk+j+n + (−1n+k+1)Pk+j

Qk+j+2n = (−1k(Pn+kQk−1 − Pn+k−1Qk + PkQn+k−1 − Pk−1Qn+k))Qk+j+n + (−1n+k+1)Qk+j

11



Proof. Like we did when finding the recurrence relation for purely periodic continued fractions, we make use
of Proposition 11 to get

k+j+2n∏
i=1

(
ai 1
1 0

)
=

(
Pk+j+2n Pk+j+2n−1
Qk+j+2n Qk+j+2n−1

)
= (

k+j∏
i=1

(
ai 1
1 0

)
)(

n+k∏
i=k+1

(
ai 1
1 0

)
)2

k+j+n∏
i=1

(
ai 1
1 0

)
=

(
Pk+j+n Pk+j+n−1
Qk+j+n Qk+j+n−1

)
= (

k+j∏
i=1

(
ai 1
1 0

)
)(

n+k∏
i=k+1

(
ai 1
1 0

)
)

k+j∏
i=1

(
ai 1
1 0

)
=

(
Pk+j Pk+j−1
Qk+j Qk+j−1

)
If

n+k∏
i=k+1

(
ai 1
1 0

)
=

(
β1 β2
β3 β4

)
then

Pk+j+2n = (β1 + β4)Pk+j+n + (β2β3 − β1β4)Pk+j

Qk+j+2n = (β1 + β4)Qk+j+n + (β2β3 − β1β4)Qk+j

which we showed when finding the explicit form of the recursion for purely periodic continued fractions.
Rewriting this product, we can compute β1, β2, β3, β4.

(
β1 β2
β3 β4

)
=

n+k∏
i=k+1

(
ai 1
1 0

)
=

n+k∏
i=1

(
ai 1
1 0

)
k∏
i=1

(
ai 1
1 0

) =

(
Pn+k Pn+k−1
Qn+k Qn+k−1

)
(
Pk Pk−1
Qk Qk−1

)
Since the determinant of the matrix in the denominator is not zero, it has an inverse. Let(

Pk Pk−1
Qk Qk−1

)−1
=

(
γ1 γ2
γ3 γ4

)
and by the definition of the inverse of a matrix,(

Pk Pk−1
Qk Qk−1

)(
γ1 γ2
γ3 γ4

)
=

(
1 0
0 1

)
which results in the following set of four equations in four variables (γ1, γ2, γ3, γ4).

Pkγ1 + Pk−1γ3 = 1

Pkγ2 + Pk−1γ4 = 0

Qkγ1 +Qk−1γ3 = 0

Qkγ2 +Qk−1γ4 = 1

which results in
γ1 = −1kQk−1

γ2 = −1k+1Pk−1

γ3 = −1k+1Qk

γ4 = −1kPk

Thus, (
β1 β2
β3 β4

)
=

(
Pn+k Pn+k−1
Qn+k Qn+k−1

)(
−1kQk−1 −1k+1Pk−1
−1k+1Qk −1kPk

)

12



We are only concerned with calculating β2β3 − β1β4 and β1 + β4 which we compute to be

β1 + β4 = (−1k(Pn+kQk−1 − Pn+k−1Qk + PkQn+k−1 − Pk−1Qn+k))

β2β3 − β1β4 = −1n+k+1

and thus

Pk+j+2n = (−1k(Pn+kQk−1 − Pn+k−1Qk + PkQn+k−1 − Pk−1Qn+k))Pk+j+n + (−1n+k+1)Pk+j

Qk+j+2n = (−1k(Pn+kQk−1 − Pn+k−1Qk + PkQn+k−1 − Pk−1Qn+k))Qk+j+n + (−1n+k+1)Qk+j

�

If we let k = 0 then α becomes purely periodic. Letting P−1 = 0, Q−1 = 1, the recursive formulas derived
for periodic continued fractions become the ones derived for purely periodic fractions. Setting P−1 and Q−1
to these values coupled with P0 = 1, Q0 = 0 results in P1 = a1, Q1 = 1. With these explicit formulas for the
recurrence relations involving the convergent numerators and denominators, we can prove that {Pj}∞j=1 and
{Qj}∞j=1 satisfy Benford’s Law for any periodic continued fraction using a similar method used for purely
periodic continued fraction. However, this result would be stronger because it is a generalization of purely
periodic continued fractions. Now that we have found a large class of numbers (the quadratic irrationals)
whose {Pj}∞j=1 and {Qj}∞j=1 follow Benford’s Law, we consider arbitrarily chosen numbers.

4.3 The Gauss-Kuzmin Distribution

Having shown that the terms of the simple continued fractions of rationals and quadratic irrationals do not
satisfy Benford’s Law, a natural question to ask would be if these results can be extended for some arbitrary α.

Although real numbers come in many different varieties, their continued fractions share a common be-
havior. Gauss discovered that the terms in the continued fraction expansions of almost all x ∈ [0, 1) follow
the same distribution:

Theorem 4 (Gauss-Kuzmin [Kar13]). Let [a1, a2, a3 . . .] be the continued fraction expansion of a randomly
chosen x ∈ [0, 1). Then as n→∞, the probability that an = k for any k ∈ N is

lim
n→∞

P (an = k) = − log2(1− 1

(k + 1)2
).

Using this distribution, we can determine whether almost all α are Benford.

Proposition 19. Let α have a simple continued fraction expansion of [a1, a2, . . .]. Then for all α except a
set of measure zero, the sequence {an}∞n=1 does not follow Benford’s Law.

Proof. Let x be a number chosen randomly from the interval (0,1). Furthermore, let the simple continued
fraction expansion of x be [a1, a2, . . .]. Then by the Gauss-Kuzmin theorem, for all x except for a set of
measure zero,

lim
n→∞

P (an = k) =
− log(1− 1

(k+1)2 )

log 2

. Consider the probability that an has a leading digit of 1. This probability is

∞∑
i=1

− log(1− 1
(bi+1)2

)

log 2 = 1
log 2

∞∑
i=1

− log(1− 1
(bi+1)2 ) = 1

log 2

∞∑
i=1

log (bi+1)2

b2i+2bi
= ( 1

log 2 )(log
∞∏
i=1

(bi+1)2

b2i+2bi
)

where bi is the ith natural number with a leading digit of 1. Note that (bi+1)2

b2i+2bi
= 1 + 1

b2i+2bi
> 1 for bi ∈ N.

Thus
k∏
i=1

(bi+1)2

b2i+2bi
<
k+1∏
i=1

(bi+1)2

b2i+2bi
and as a result

( 1
log 2 )(log

1∏
i=1

(bi+1)2

b2i+2bi
) =

log 4
3

log 2 < ( 1
log 2 )(log

∞∏
i=1

(bi+1)2

b2i+2bi
)
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If an followed Benford’s law, then the probability that the leading digit is 1 would be log 2. But

log 2 <
log 4

3

log 2 < ( 1
log 2 )(log

∞∏
i=1

(bi+1)2

b2i+2bi
→ log 2 6= ( 1

log 2 )(log
∞∏
i=1

(bi+1)2

b2i+2bi
)

Thus the sequence an does not follow Benford’s law. Consider a real number y = byc+ {y} chosen from the
interval (1,∞). The continued fraction expansion of y is thus [byc, b2, b3, . . .] where the continued fraction
expansion of {y} is [0, b2, b3, . . .]. Removing and adding a finite number of terms from a sequence that does
not follow Benford’s law results in another sequence that does not follow Benford’s law, by Proposition 3.
Thus, the sequence bn does not follow Benford’s law. Thus, for all α in ((0,∞), except for a set of measure
zero, {an}∞n=1 follows Benford’s Law. �

4.4 The Levy Constant

Just as the terms of almost all continued fractions follow the Gauss-Kuzmin distribution, the convergents of
almost all continued fractions also follow a certain distribution. This phenomenon is characterized by the
following theorem, which was proved by Lévy:

Theorem 5 ([Bax09]). Let Pn

Qn
be the nth convergent of α. Then for all α but a set of measure zero,

lim
n→∞

Q1/n
n = eβ ,

where β = π2

12 log 2 .

Using Levy’s theorem, we can conjecture that the sequences of convergents of almost all α satisfy Benford’s
law.

Conjecture. log10 e
β is irrational.

If the conjecture is true, then we have the following proposition:

Proposition 20. Let Pn

Qn
be the nth convergent of α. For all α but a set of measure zero, the sequences

{Qn}∞n=1 and {Pn}∞n=1 follow Benford’s Law.

Proof. By Theorem 5, for all α but a set of measure zero, limn→∞Q
1/n
n = eβ , which implies limn→∞Qn =

eβn. Thus

lim
n→∞

logQn − logQn−1 = lim
n→∞

log
Qn
Qn−1

= log
eβn

eβ(n−1)
= log eβ .

If log eβ = π2

12ln2 is irrational, then {logQn}∞n=1 is equidistributed modulo 1 by Proposition 3, which means
that {Qn}∞n=1 follows Benford’s law by Proposition 1. By Proposition 14 {Pn}∞n=1 also follows Benford’s
Law. �

What follows from this conjecture is a very strong result: for almost all α, {Pn}∞n=1 and {Qn}∞n=1 follow
Benford’s Law. However, this relies on log10 e

β being irrational. One way to gather numerical evidence
to support this conjecture is to see if {Pn}∞n=1 and {Qn}∞n=1 follow Benford’s Law for α that obey Levy’s
constant. If they do follow Benford’s Law, then we have reasons to believe that our conjecture is true.

4.5 Continued Fractions of Transcendentals

While Gauss and Levy’s conditions hold true for almost all irrationals, it is not known how to determine
whether a given transcendental number such as e and π satisfies them. Thus, we decided to separately
investigate whether the terms and convergents of these two transcendentals satisfies Benford’s law.

The continued fraction expansion for e has an elegant structure: e = [2; 1, 2, 1, 1, 4, 1, 1, 6, ...]. Since the
terms of this continued fraction have a first digit of 1 more than half of the time, it is clear that the terms of
e do not satisfy Benford’s law. On the other hand, the continued fraction of π = [3, 7, 15, 1, 292, 1, 1, 1, 2...]
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follows no recognizable pattern. Yet when we perform numerical analysis, we discover that the convergents of
e and π behave similarly. To gather data, we wrote a Sage program that calculated the successive convergents
with a linear recursion and computed the frequency of their first digits. We then compared the frequencies
with the those predicted by Benford’s law by taking the average distance between them, measured by the
absolute value of their difference. As the number of terms increased, we saw that their average distances
quickly tended towards zero:

# Terms Average Distance (e) Average Distance (π)
100 2.86 · 10−2 3.00 · 10−2

1000 9.55 · 10−3 5.74 · 10−3

10,000 3.74 · 10−3 2.62 · 10−3

Given that the predicted first digit frequency ranges from 0.3 for a first digit of 1 to 0.05 for a first digit of
9, the size of the disparity is less than the range by an order of 102. Thus we have sufficient evidence to
conjecture that the convergents of e and π both satisfy Benford’s law.

5 Conclusion

In this paper we have applied the method of proving that Benford’s law arises in the Fibonacci sequence
to prove that all linear recurrences satisfy Benford’s law. We have also derived results for simple continued
fraction expansions of irrationals, including that the convergents of periodic continued fractions follow Ben-
ford’s law. By using the Gauss-Kuzmin distribution, we showed that the terms of almost all simple continued
fractions do not follow Benford’s Law. Furthermore, we conjectured that the the convergents of all simple
continued fractions but a set of measure of zero follow Benford’s Law by conjecturing theat the common log
of the Levy constant is irrational.

Along the line of continued fractions, the most immediate future direction includes proving the satisfaction
of Benford’s law for the continued fraction expansions of e and π, which are neither periodic nor confirmed to
follow the Gauss-Kuzmin distribution. Another unexplored problem would involve investigating Benford’s
law for non-simple continued fractions, which have values other than 1 in the numerators of the expansion.
Through numerical calculations, we found that the convergents of the simple continued fraction expansion
of π converged to a Benford sequence faster than e with both converging slower than quadratic irrationals.
Thus it would be natural to explore which numbers’ continued fraction expansions converge to a Benford
sequence fastest.
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