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Abstract

We give an overview on the ubiquitous nature of Benford’s Law. We cover principles
of equidistribution and answer questions concerning under which conditions Benford’s Law
is satisfied. The paper expands to cover Benford’s law for different bases, for exponential
sequences, recursive sequences, and certain Ulam sequences. Furthermore, we establish greater
structure found within the Ulam sequence.

Notation

The following notations/definitions will be used throughout this paper:

• We define a function S(a,b) : N → N0 for positive integers a and b as the number of ways to
write a natural number as the sum of two distinct terms of the (a, b) Ulam sequence.

• S(1,2)(n) will be simply denoted S(n).

• log(n) denotes the logarithm of n in base 10

• {n} denotes the fractional part of n ∈ R

• A sequence is denoted as (an) instead of the traditional {an} (because we reference the
fractional part of expressions frequently, this avoids confusion).

• We define a function in base b as the following:

Lb : R+ → {1, 2, . . . , b− 1}
x 7→ `b

where `b is the unique number in {1, 2, . . . , b− 1} s.t. x = `b · bn for some n ∈ Z.

• L10(x) will simply be denoted L(x).

• The cardinality of a countable set S will be denoted #S.

1 Ulam sequence

1, 2, 3, 4, 6, 8, 11, 13, 16, 18, ...

The (a, b) Ulam sequence (ui) is defined by u1 = a, u2 = b, with the general term un for
n > 2 given by the least integer uniquely expressible as the sum of two distinct earlier terms.
The numbers in the sequence are denoted as ”u-numbers” or ”Ulam numbers.” In general, when
referring to the Ulam sequence, we are referring to the (1, 2) Ulam sequence. When speaking of
other Ulam sequences, we will appropriately call them by their full name: the (a, b) Ulam sequence.
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1.1 Known Findings of Ulam Sequences

In a paper by Stefan Steinerberger, Steinerberger found a hidden signal persisting within the Ulam
numbers. Dilating the sequence by an irrational α where α ≈ 2.571447..., Steinberger found that
cos(2.571447un) < 0 for all un 6= 2, 3, 47, 69. The structure Steinenberger observed has been best
described by Phillip Gibbs in the following conjecture:

Conjecture 1 (Gibbs [1]). For any Ulam sequence an there is a natural wavelength λ ≥ 2 ∈ R
such that if rn is the residual of an mod λ in the interval [0, λ) then for any ε > 0 there are only
a finite number of elements in the Ulam sequence such that rn <

λ
3 − ε and rn >

2λ
3 + ε.

1.2 Our Findings

We propose a stronger conjecture:

Conjecture 2 (Alvarez-Hwang-Kriegman). For any Ulam sequence (an) there is a natural wave-
length λ ≥ 2 ∈ R and differentiable periodic function c : R→ R with period λ such that

lim sup
n→∞

|S(n)− nc(n)|

exists and is finite, and c(x) = 0 if and only if λ
3 ≤ rx ≤

2λ
3 where rx is the residual of x (mod λ).

Theorem 1. Conjecture 2 =⇒ Conjecture 1

Proof. Let

C =

{
x ∈ R : (x mod λ) ∈

[
λ

3
,

2λ

3

]}
and let W = R − C, where C stands for center and W stands for wings. For any r ∈ W, we can
consider what happens to (xc)(nλ+ r) as n→∞ where

(xc)(y) := yc(y)

and n ∈ Z. c(nλ+ r) is constant, but nλ+ r →∞, so (xc)(nλ+ r)→∞. Let

L = lim sup
n→∞

|S(n)− nc(n)|

and consider some N such that ∀n ≥ N , we have

(xc)(nλ+ r′) > L+ 1

where r′ is an arbitrary element of a small open neighborhood around r completely contained inW.
We can consider the asymptotic behavior of this whole neighborhood because d

dxc(x) is bounded
(although continuity may be sufficient for this step). So if m = nλ + r′ for some m ∈ Z, then
S(m) > 1, and therefore m is not an Ulam number.
Just outside of C we can see the outliers Gibbs described. As r approaches λ

3 from the left or 2λ
3

from the right, c(x) approaches 0.
Within C, we can have arbitrarily many Ulam numbers as long as L ≥ 1.

This conjecture is likely easier to prove because it explains more about why these patterns exist.
Conjecture 1 doesn’t specify whether we see few Ulam numbers n ∈ W because they are misses
(S(n) = 0) or hits (S(n) ≥ 2), whereas Conjecture 2 not only implies they are hits, but gives
insight into the magnitude of S(n). We discovered this structure when we plotted S(n) for the
first 10000 numbers against n (mod λ) (Figure 1).

The points are colored on a gradient, so the blue is the early behavior and the red is the
behavior around 10000.
Notice that the points approach a curve which is slowly rising. It is important that every point
in W approaches this curve, and there are no rare exceptions where we sudddenly have an Ulam
number at some random point such, as λ

6 .
Previously it has been observed that any irregular Ulam sequence is not equidistributed in C,

and in the case of the (1, 2) Ulam numbers, we see two peaks. We have a very good reason for
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Figure 1: A scatter plot of S(n) against n (mod λ) for 0 ≤ n < 10000.

Figure 2: The Ulam numbers divided by λ plotted against their residues modulo λ

this behavior. If we plot the Ulam numbers against their residues modulo λ, we can see some
symmetries:

It appears the the left tower is the right tower shifted over. In fact it is. Most of the terms in
the right tower will give a term in the left tower when added to 2. You’ll notice the left tower is
thicker. This is because the terms on the left side of the left tower are made by adding an outlier
from the right side other than 2 to a term from the right tower. Terms in the right tower are
created similarly, by adding a left outlier to a term from the left tower. These are merely patterns
that we have observed in our data, but their formalization thus far is pure conjecture. We can see
a sharper pattern in the (2, 3) Ulam sequence (Figure 3).

We see four and a half towers, each of which is a rough translation of the one to the right.
There is a good reason for the smaller distance between the towers. While the furthest outlier for
the (1, 2) Ulam sequence, 2, is in the middle of

[
2λ
3 , λ

]
, the outlier for the (2, 3) case, 5, is very close

to the end of the interval. Therefore, adding five amounts to a relatively small shift left modulo λ.

2 Benford’s Law and Equidistribution

Consider the sequence

1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384...

Looking at the sequence of leading digits, 1, 2, 4, 8, 1, 3, 6, 1, 2, 5, 1, 2, 4, 8, 1, ... it appears that some
digits appear more frequently as leading digits than others. We attempt to investigate this property.

Lemma 1. L(N) = L
(
10{logN}

)
for any positive integer N

Proof. Consider a positive integer N . In order to find L(N), we write N as

N = 10logN = 10blogNc+{logN}
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Figure 3: The (2, 3) Ulam numbers divided by λ plotted against their residues modulo λ

where {k} denotes the fractional part of any integer k. Because multiplication by 10blogNc doesn’t
change the leading digit of an integer, we see that L(N) = L

(
10{logN}

)
.

2.1 Equidistribution

Theorem 2 (Weyl’s equidistribution theorem). Let α be irrational, and 0 ≤ a ≤ b ≤ 1. Then

lim
N→∞

#{0 ≤ n ≤ N : a ≤ {nα} ≤ b}
N

= b− a

that is, the fractional parts of multiples of α are equidistributed in [0, 1].

Theorem 3 (Difference Theorem). If a sequence (xn)n≥1 has the property

lim
k→∞

(xk+1 − xk) = α,

where α is an irrational, then the sequence (xn) is equidistributed modulo 1.

2.2 Benford’s Law

Law 1 (Benford). For 1 ≤ d ≤ 9, the frequency, fd, of the leading digit d in a sequence {|an|} is
given by

fd = lim
N→∞

#{0 ≤ n ≤ N : L(an) = d}
N

= log(d+ 1)− log(d) = log

(
1 +

1

d

)
.

Figure 4: Logarithmic Scale

Example 1. The sequence (2n)n≥1 satisfies Benford’s Law
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Proof. Let L(2n) = k, then
k · 10p ≤ 2n ≤ (k + 1) · 10p.

Taking the logarithm base 10, we find that {n log(2)} ∈ [log(k), log(k + 1)].
By Weyl’s equidistribution theorem, the fractional part of n log(2) equidistributes over the interval
[0, 1). Thus, the number of times this map falls between the interval [a, b] is b − a, meaning that
the proportion of powers of 2 which start with k equals

log(k + 1)− log(k) = log

(
1 +

1

k

)
.

Lemma 2. If a sequence (xn)n≥1 has the property

lim
k→∞

{log(xk)− log(xk−1)} = α,

where α is an irrational number, then it satisfies Benford’s Law.

Proof. If
lim
k→∞

{log(xk)− log(xk−1)} = α

where α is irrational, then by Theorem 3, the sequence ({log(xn)})n≥1 is equidistributed modulo 1.
Because the fractional part of log xn equidistributes over the interval [0, 1), by theorem 2 we know
the number of times the map falls between the interval [a, b] is b− a, meaning that the proportion
of (xn) with leading digit d is

log(d+ 1)− log(d) = log

(
1 +

1

d

)
Therefore, (xn) satisfies Benford’s Law.
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3 Extension to Other Bases

Law 2 (Extended Benford’s). For 1 ≤ d ≤ b− 1, the frequency of the leading digit d in a sequence
{|an|} in base b is given by

fd = lim
N→∞

#{0 ≤ n ≤ N : Lb(an) = d}
N

= log(d+ 1)− log(d) = log

(
1 +

1

d

)
.

Lemma 3. If a sequence (xn)n≥1 has the property such that

lim
k→∞

{logb(xk+1)− logb(xk)} = α

where α is a positive irrational base b, then (xn) satisfies Benford’s Law.

Proof. If α is irrational, then by Theorem 3, the sequence {logb(xn)}n≥1 is equidistributed modulo
1b. Because the fractional part of logb(xn) eqidstributes over the interval [0, 1), by Weyl’s we
have that the number of times the map falls between the interval [a,b] is b− a, meaning that the
proportion of (xn) with leading digit d is

logb(d+ 1)− logb(d) = logb

(
1 +

1

d

)
.

This tool implies that nearly all structures that follow Benford’s Law in one base follow Benford’s
law in another.
For example, an exponential series of the form xn satisfies Benford’s law in nearly all bases. By
Lemma 7, for example, we have that for any k ∈ N,

{logb(x
k)− logb(x

k−1)} = {logb(x)},

implying that the only criteria necessary for Benford’s Law to be satsified is for logb(x) to be
irrational.
Similarly, linear recursive sequences of the form shown in (1) also satisfy Benford’s Law. Adopting
the same approach in (2) and (3), we see that linear recursive sequences will hold true in another
base as long as r 6= bn, n ∈ Z or r1 6= bn, n ∈ Z. The same holds true for regular sequences.
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4 Recursive Sequences

Example 2. The Fibonnaci sequence 1, 1, 2, 3, 5, 8, 13, 21, ... satisfies Benford’s Law.

Proof. Let (Fn) denote the Fibonacci sequence where Fk is defined as the kth Fibonacci number.
Because

lim
n→∞

Fn
Fn−1

= φ,

we can approximate Fn as Fn ≈ φFn−1. Now consider

lim
n→∞

{log(Fn)− log(Fn−1)} ≈ lim
n→∞

{log(φFn−1)− log(Fn−1)}

≈ {log(φ)}

Although log(Fn)− log(Fn−1) is not exactly φ, it is seemingly close enough to φ, so we can apply
Lemma 2 to show that the Fibonacci sequence satisfies Benford’s Law.

Theorem 4. Nearly all linear recurrences satisfy Benford’s Law.

Consider the sequence (xn)n≥1 satisfying the following linear recursion

xn+m = am−1xn+m−1 + am−2xn+m−2 + ...+ a0xn (1)

for n ≥ 1 and additionally, xi = a constant ci ∀i ∈ {1, 2, ...,m}. To prove that the following linear
recursion satisfies Benford’s Law, we consider the linear recurrences case by case:
First, we consider the case where the characteristic polynomial of the linear recurrence only has
one root. Then, we will expand our considerations to characteristic polynomials with s roots with
a finite multiplicity:

Lemma 4. If the characteristic polynomial has only one root r 6= ±10l, l ∈ Z, then the linear
recurrence satisfies Benford’s Law.

Proof. We can create a characteristic polynomial to generate an equation giving xn for any n. In
general,

xn = rn−1 ·
m−1∑
k=0

bkn
k

where bi is constant ∀i ∈ {1, 2, ...,m− 1}. By substitution,

lim
n→∞

xn+1

xn
= lim
n→∞

(b0 + b1(n+ 1) + ...+ bm−1(n+ 1)m−1)rn

(b0 + b1n+ ...+ bm−1nm−1)rn−1

= lim
n→∞

(b0 + b1(n+ 1) + ...+ bm−1(n+ 1)m−1)r

(b0 + b1n+ ...+ bm−1nm−1)

= r

(2)

so
lim
n→∞

{log |xn+1| − log |xn|} = {log |r|}.

Since log |r| is irrational, the linear recurrence satisfies Benford’s Law.

Lemma 5. If the characteristic polynomial has distinct roots r1, r2, ...rs with multiplicity y1, y2, ...ys
respectively, then the linear recurrence will follow Benford’s Law.

Proof. Without a loss of generality, suppose |r1| > |ri| for i ∈ {2, 3, ..., s}. Note that xn can be
represented as

xn =

s∑
k=1

Pk(n− 1) · rn−1k

where Pi is a polynomial with deg(Pi) ≤ yi − 1.
Thus,

lim
n→∞

xn+1

xn
= lim
n→∞

P1(n)rn1 + P2(n)rn2 + ...+ Ps(n)rns
P1(n− 1)rn−11 + P2(n− 1)rn−12 + ...+ Ps(n− 1)rn−1s

= lim
n→∞

rn1 (P1(n) + P2(n)(r2/r1)n + ...+ Ps(n)(rs/r1)n)

rn−11 (P1(n− 1) + P2(n− 1)(r2/r1)n−1 + ...+ Ps(n− 1)(rs/r1)n−1)

= r1

(3)
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Since
lim
n→∞

log |xn+1| − log |xn| = log |r1|

our linear recurrence will satisfy Benfords’ Law as long as log |r1| is irrational and P1(n− 1) 6= 0.

However, if r1 = −r2 and n is odd, we can then write

xn = (P1(n− 1) + P2(n− 2))rn−11 +

s∑
k=3

Pk(n− 1) · rn−1k

and if n is even,

xn = (P1(n− 1)− P2(n− 2))rn−11 +

s∑
k=3

Pk(n− 1) · rn−1k .

So by a similar approach, we have that

lim
n→∞

∣∣∣∣x2n+2

x2n

∣∣∣∣ = r21

and

lim
n→∞

∣∣∣∣x2n+3

x2n+1

∣∣∣∣ = r21.

If again P1(n−1) +P2(n−1) 6= 0 and r1 6= ±10l for l ∈ Z, the sequence will follow Benford’s Law.
By Lemma 2, the sequences (x2n)n≥1 and (x2n+1)n≥1 both satisfy Benford’s Law since

lim
n→∞

{
log

∣∣∣∣x2n+2

x2n

∣∣∣∣} = {2 log(r1)}

and

lim
n→∞

{
log

∣∣∣∣x2n+3

x2n+1

∣∣∣∣} = {2 log(r1)}.

Taken together, the sequence (xn) will satisfy Benford’s law as well.

Therefore, nearly all linear recurrences satisfy Benford’s Law.

Definition 1. A sequence (xn) is defined as being regular if eventually the differences between
successive terms in the sequence becomes periodic.

An example of a regular sequence is

(xn) := 1, 5, 7, 4, 3, 8, 10, 14, 22, 24, 28, 36, 38, 42, 50, ...

The sequence of differences between successive differences between terms of (xn) is

4, 2,−3,−1, 5, 2, 4, 8, 2, 4, 8, 2, 4, 8, ...

Eventually the differences between terms becomes periodic and the differences between terms
rotates through 2, 4, and 8. Since regular sequences demonstrate linear growth, most of them seem
to not satisfy Benford’s Law; however, we can still prove something interesting about them in
regards to Benford’s Law:

Lemma 6. (axn)n≥1 satisfies Benford’s Law, where (xn) is a regular sequence and a is a natural
number 6= 10k for k ∈ Z.

Proof. If we can show that
lim
k→∞

{log (axk)− log (axk−1)} = α

where α is a positive irrational number, then Lemma 2 tells us that (axn) satisfies Benford’s Law.
However,

{log (axk)− log (axk−1)} =

{
log

(
axk

axk−1

)}
= {(xk − xk−1) log(a)}
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and it becomes evident that the difference between log (axk) and log (axk−1) doesn’t seem to ap-
proach a constant irrational number, since xk − xk−1 is not constant ∀k. Because of this, we take
a new approach to the proof using the fact that (axn) is regular.

Since (axn) is a regular sequence, we know that there exists some sufficiently large natural
number d where for k ≥ 1,

xd+mk+1 − xd+mk = c1,

xd+mk+2 − xd+mk+1 = c2,

...

xd+mk+m−1 − xd+mk+m−2 = cm−1

where all ci are constants and m is the length of the periodic differences (in the example before,
when the differences between terms rotated between 2,4, and 8, the length of the periodic differences
is 3). Now consider the m distinct sequences (xd+mk)k≥0, (xd+mk+1)k≥0, ..., (xd+mk+m−1)k≥0. By
showing that the subsequences (axd+mk), (axd+mk+1), . . . , (axd+mk+m−1) all satisfy Benford’s Law,
then (axn) satisfies Benford’s Law, simply because an infinite number of terms in the sequence
obey Benford’s Law, while finitely many may not (these are the terms before xd+mk).
We know that for any i ∈ {0, 1, . . . ,m− 1}, the difference between any two successive terms in the
sequence xd+mk+i is

s =

m−1∑
i=1

ci

This means that for any j ∈ N,

{log (axd+m(k+j)+i)− log (axd+m(k+(j−1))+i)} = {((xd+m(k+j)+i)− (xd+m(k+(j−1))+i)) log(a)}
= {s log(a)}.

Because a is not a power of 10 by the conditions of the lemma, {s log(a)} is irrational, and thus,

(axd+mk), (axd+mk+1), . . . , (axd+mk+m−1)

all satisfy Benford’s Law, and therefore (axn)n≥1 satisfies Benford’s Law.
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