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Abstract

In this paper, we give an overview on the ubiquitous nature of Benford’s Law and cover

principles of equidistribution to answer questions concerning under which conditions Benford’s

Law is satisfied. The paper expands to cover Benford’s law for different bases, exponential

sequences, recursive sequences, regular sequences, and certain Ulam sequences. By gaining

a deeper insight of the criteria for sequences to satisfy Beford’s Law, we were able to draw

out conclusions about the possible linear growth of certain Ulam Sequences, particularly the

standard (1,2) Ulam sequence. Furthermore, we establish an undiscovered, greater structure

found within Ulam sequences, which sheds insight on the possibility of a formula to calculate

all Ulam numbers.

1 Introduction

The mysterious phenomena that characterizes the essence of Benfords Law lies in an observation

of the frequency distribution of the leading digits in both very abstract and many real-life sets

of numerical data (the leading digit of a number is its leftmost digit). It is natural to seek the

criteria a set or sequence must satisfy in order to obey this intriguing frequency distribution. Many

distinctly defined sets and sequences satisfy Benfords Law, and our group was able to find infinitely

many more examples of sequences that satisfy this law.

As we discover more of these criteria, we begin to uncover structures in seemingly unnatural

sets. By running extensive code, we can take sets of numerical data and calculate the frequency of

leading digits and observe whether these sets satisfy Benfords Law for an arbitrarily large number

of terms. Using this method, we were able to establish structures found within particular sequences

with an uncanny, ubiquitous nature: the Ulam sequences.
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A sequence formed by appending the smallest number with a unique representation as a sum

of two earlier numbers is an Ulam sequence. Despite the simplicity these sequences display at

first, they have many unexpected properties which have thus far been observed but entirely evaded

explanation or proof. Aside from the insight gained by manipulating Ulam sequences into sequences

that satisfy Benfords Law, we made previously undiscovered observations on Ulam sequences which

build upon the existing observations. Previous results have shown that a certain class of numbers

are not in the Ulam sequence, but our observations provide a more precise explanation as to why

and a possible way to prove it. We crafted our observation of the data into a conjecture which is

stronger than existing conjectures, provides more insight into the nature of these sequences, and

should be easier to prove.

Notation

The following notation/definitions will be used throughout the paper:

• We define a function S(a,b) : N → N0 for positive integers a and b as the number of ways to

write a natural number as the sum of two distinct terms of the (a, b) Ulam sequence.

• S(1,2)(n) will be simply denoted S(n).

• Let U(a, b) denote the set of all Ulam numbers in the (a, b) Ulam Sequence.

• U(1, 2) will be simply denoted U

• log(n) denotes the logarithm of n in base 10

• {n} denotes the fractional part of n ∈ R

• A sequence is denoted as (an) instead of the traditional {an} (because we reference the

fractional part of expressions frequently, this avoids confusion).

• For b ∈ N, we define a function Lb as the following:

Lb : R+ → {1, 2, . . . , b− 1}

x 7→ `b

where `b is the unique number in {1, 2, . . . , b− 1} s.t. x = `b · bn for some n ∈ Z.

• L10(x) will simply be denoted L(x).

• The cardinality of a countable set S will be denoted #S.
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2 Ulam Sequences

The (a, b) Ulam sequence (ui) is defined by u1 = a, u2 = b, with the general term un for

n > 2 given by the least integer uniquely expressible as the sum of two distinct earlier terms. The

numbers in the sequence are called ”u-numbers” or ”Ulam numbers.” In general, when referring

to the Ulam sequence, we are referring to the (1, 2) Ulam sequence. When speaking of other Ulam

sequences, we will appropriately call them by their full name: the (a, b) Ulam sequence.

2.1 Known Findings of Ulam Sequences

In [1], Steinerberger found a hidden signal persisting within the Ulam numbers. Dilating the

sequence by an irrational α where α ≈ 2.571447..., Steinberger found that cos(2.571447un) < 0

for all un 6= 2, 3, 47, 69. The structure Steinenberger observed has been best described by Phillip

Gibbs in the following conjecture:

Conjecture 1 (Gibbs [1]). Let λ = 2π
α . For any Ulam sequence an there is a natural wavelength

λ ≥ 2 ∈ R such that if rn is the residual of an mod λ in the interval [0, λ) then for any ε > 0 there

are only a finite number of elements in the Ulam sequence such that rn <
λ
3 − ε and rn >

2λ
3 + ε.

2.2 Our Findings

We propose a stronger conjecture:

Conjecture 2. For any (a, b) Ulam sequence (un) there is a natural wavelength λ ≥ 2 ∈ R and

differentiable periodic function c : R→ R with period λ such that

lim sup
n→∞

|S(a,b)(n)− nc(n)|

exists and is finite. Moreover, c(x) = 0 if and only if λ
3 ≤ rx ≤ 2λ

3 where rx is the residual of x

(mod λ).

Theorem 1. Conjecture 2 =⇒ Conjecture 1

Proof. Let

C :=

{
x ∈ R : (x mod λ) ∈

[
λ

3
,

2λ

3

]}
and let W = R − C, where C stands for center and W stands for wings. For any r ∈ W, we can

consider what happens to ξ(nλ+ r) as n→∞ where

ξ(x) := xc(x)
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and n ∈ Z. Notice c(nλ+ r) is constant, but nλ+ r →∞ as n→∞, so ξ(nλ+ r)→∞. Let

L = lim sup
n→∞

|S(a,b)(n)− nc(n)|

and consider some N ∈ R+ such that ∀n ≥ N , we have

ξ(nλ+ r′) > L+ 1

where r′ is an arbitrary element of a small open neighborhood around r completely contained inW.

We can consider the asymptotic behavior of this whole neighborhood because d
dxc(x) is bounded

(although continuity may be sufficient for this step). So if m = nλ + r′ for some m ∈ Z, then

S(a,b)(m) > 1, and therefore m is not an Ulam number.

Just outside of C we can see the outliers Gibbs described. As r approaches λ
3 from the left or 2λ

3

from the right, c(x) approaches 0.

Within C, we can have arbitrarily many Ulam numbers as long as L ≥ 1.

Conjecture 2 is likely easier to prove because it explains more about why these patterns exist.

Conjecture 1 doesn’t specify whether we see few Ulam numbers n ∈ W because they are ”misses”

(S(a,b)(n) = 0) or ”hits” (S(a,b)(n) ≥ 2), whereas Conjecture 2 not only implies they are hits, but

gives insight into the magnitude of S(a,b)(n). We discovered this structure when we plotted S(n)

for the first 10000 numbers against n (mod λ) (Figure 1).

Figure 1: A scatter plot of S(n) against n (mod λ) for 0 ≤ n < 10000.

The points are colored on a gradient, so the blue is the early behavior and the red is the behavior

around 10000.

Notice that the points approach a curve which is slowly rising. It is important that every point

in W approaches this curve, and there are no rare exceptions where we sudddenly have an Ulam

number at some random point such as λ
6 .
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Previously it has been observed that any irregular Ulam sequence is not equidistributed in C,

and in the case of the (1, 2) Ulam sequence, we see two peaks. We have a very good reason for

this behavior. If we plot the Ulam numbers against their residues modulo λ, we can see some

symmetries (Figure 2):

Figure 2: The Ulam numbers divided by λ plotted against their residues modulo λ

It appears the the left tower is the right tower shifted over. In fact it is. Most of the terms in

the right tower will give a term in the left tower when added to 2. You’ll notice the left tower is

thicker. This is because the terms on the left side of the left tower are made by adding an outlier

from the right side other than 2 to a term from the right tower. Terms in the right tower are

created similarly, by adding a left outlier to a term from the left tower. These are merely patterns

that we have observed in our data, but their formalization thus far is pure conjecture. We can see

a sharper pattern in the (2, 3) Ulam sequence (Figure 3).

Figure 3: The (2, 3) Ulam numbers divided by λ plotted against their residues modulo λ

We see four and a half towers, each of which is a rough translation of the one to the right.

There is a good reason for the smaller distance between the towers. While the furthest outlier for
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the (1, 2) Ulam sequence, 2, is in the middle of
[
2λ
3 , λ

]
, the outlier for the (2, 3) case, 5, is very

close to the end of the interval. Therefore, adding five leads to a relatively small shift left modulo

λ.

3 A Brief Overview of Benford’s Law and Equidistribution

Understanding the intuition behind a sequence satisfying Benford’s Law becomes clear upon the

understanding of the two following equidistribution theorems and Lemma 1.

3.1 Equidistribution

Theorem 2 (Weyl’s Equidistribution theorem [3]). Let α be irrational, a, b ∈ R, and 0 ≤ a ≤ b ≤

1. Then

lim
N→∞

#{0 ≤ n ≤ N : a ≤ {nα} ≤ b}
N

= b− a

that is, the fractional parts of multiples of α are equidistributed in [0, 1].

Theorem 3 (Difference Theorem [3]). If a sequence (xn)n≥1 has the property

lim
k→∞

(xk+1 − xk) = α,

where α is an irrational number, then the sequence (xn) is equidistributed modulo 1.

3.2 Benford’s Law

Law 1 (Benford). For 1 ≤ d ≤ 9, the frequency, fd, of the leading digit d in a sequence {|an|} is

given by

fd = lim
N→∞

#{0 ≤ n ≤ N : L(an) = d}
N

= log(d+ 1)− log(d) = log

(
1 +

1

d

)
.

Figure 4: Logarithmic Scale

Consider the sequence

1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384...
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Looking at the sequence of leading digits, 1, 2, 4, 8, 1, 3, 6, 1, 2, 5, 1, 2, 4, 8, 1, ... it appears that some

digits appear more frequently as leading digits than others. We investigate this property in order

to become more familiar with proving that a sequence satisfies Benford’s Law. When proving

that a sequence satisfies Benford’s Law, we generally require a manipulation of that sequence to

equidistribute under some interval (usually [0,1)).

Example 1. The sequence (2n)n≥1 satisfies Benford’s Law

To prove this, we must first prove the following lemma:

Lemma 1. L(N) = L
(
10{logN}

)
for any positive integer N

Proof. Consider a positive integer N . In order to find L(N), we write N as

N = 10logN = 10blogNc+{logN}

where {k} denotes the fractional part of any integer k. Because multiplication by 10blogNc doesn’t

change the leading digit of an integer, we see that L(N) = L
(
10{logN}

)
.

Since we know that for any N ∈ Z+, L(N) = L
(
10{logN}

)
, we can better understand the proof of

Example 1 as we see how n log 2 equidistributes over an interval:

Proof. Let L(2n) = k, then

k · 10p ≤ 2n ≤ (k + 1) · 10p.

Taking the logarithm base 10, we find that {n log(2)} ∈ [log(k), log(k + 1)].

By Weyl’s equidistribution theorem, the fractional part of n log(2) equidistributes over the interval

[0, 1). Thus, the number of times this map falls between the interval [a, b] is b − a, meaning that

the proportion of powers of 2 that start with k equals

log(k + 1)− log(k) = log

(
1 +

1

k

)
.

Lemma 2. If a sequence (xn)n≥1 has the property

lim
k→∞

{log(xk)− log(xk−1)} = α,

where α is a positive irrational number, then it satisfies Benford’s Law.

Proof. If

lim
k→∞

{log(xk)− log(xk−1)} = α
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where α is irrational, then by Theorem 3, the sequence ({log(xn)})n≥1 is equidistributed modulo 1.

Because the fractional part of log xn equidistributes over the interval [0, 1), by Theorem 2 we know

the number of times the map falls between the interval [a, b] is b− a, meaning that the proportion

of (xn) with leading digit d is

log(d+ 1)− log(d) = log

(
1 +

1

d

)

Therefore, (xn) satisfies Benford’s Law. The idea of Lemma 1 is used again to justify the last step

of this proof.

4 Extension to Other Bases

Law 2 (Extended Benford’s). For 1 ≤ d ≤ b− 1, the frequency of the leading digit d in a sequence

{|an|} in base b is given by

fd = lim
N→∞

#{0 ≤ n ≤ N : Lb(an) = d}
N

= log(d+ 1)− log(d) = log

(
1 +

1

d

)
.

Lemma 3. If a sequence (xn)n≥1 has the property such that

lim
k→∞

{logb(xk+1)− logb(xk)} = α

where α is a positive irrational base b, then (xn) satisfies Benford’s Law.

Proof. If α is irrational, then by Theorem 3, the sequence {logb(xn)}n≥1 is equidistributed modulo

1b. Because the fractional part of logb(xn) eqidstributes over the interval [0, 1), by Theorem 2 we

have that the number of times the map falls between the interval [a,b] is b− a, implying that the

proportion of (xn) with leading digit d is

logb(d+ 1)− logb(d) = logb

(
1 +

1

d

)
.

This tool implies that nearly all structures that follow Benford’s Law in one base follow Benford’s

law in another.

For example, an exponential series of the form xn satisfies Benford’s law in nearly all bases. By

Lemma 3, for example, we have that for any k ∈ N,

{logb(x
k)− logb(x

k−1)} = {logb(x)},
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implying that logb(x)’s irrationality is the only criterion necessary for (xn) to satisfy Benford’s

Law.

5 Recursive Sequences

To see the relationship between recursive sequences and Benford’s Law, first, let’s look at the

following example:

Example 2. The Fibonnaci sequence 1, 1, 2, 3, 5, 8, 13, 21, ... satisfies Benford’s Law.

Proof. Let (Fn) denote the Fibonacci sequence where Fk is defined as the kth Fibonacci number.

Because

lim
n→∞

Fn
Fn−1

= φ,

we can approximate Fn as Fn ≈ φFn−1. Now consider

lim
n→∞

{log(Fn)− log(Fn−1)} ≈ lim
n→∞

{log(φFn−1)− log(Fn−1)}

≈ {log(φ)}

Although log(Fn)− log(Fn−1) is not exactly φ, it is seemingly close enough to φ, so we can apply

Lemma 2 to show that the Fibonacci sequence satisfies Benford’s Law.

Looking beyond this notorious sequence, we wanted to extend our results to prove a more general

relation between recursive sequences and Benford’s Law.

Now consider the sequence (xn)n≥1 satisfying the following linear recursion

xn+m = am−1xn+m−1 + am−2xn+m−2 + ...+ a0xn (1)

for n ≥ 1 and additionally, xi = a constant ci ∀i ∈ {1, 2, ...,m}. In order to prove that (xn) satisfies

Benford’s Law, we consider the linear recurrences case by case:

First, we consider the case where the characteristic polynomial of the linear recurrence only has

one root. Then, we will expand our considerations to characteristic polynomials with s roots with

a finite multiplicity:

Case 1 (One Root). If the characteristic polynomial has only one root r 6= ±10l, l ∈ Z, then the

linear recurrence satisfies Benford’s Law.

Proof. We can create a characteristic polynomial to generate an equation giving xn for any n. In

general,

xn = rn−1 ·
m−1∑
k=0

bkn
k
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where bi is constant ∀i ∈ {1, 2, ...,m− 1}. By substitution,

lim
n→∞

xn+1

xn
= lim
n→∞

(b0 + b1(n+ 1) + ...+ bm−1(n+ 1)m−1)rn

(b0 + b1n+ ...+ bm−1nm−1)rn−1

= lim
n→∞

(b0 + b1(n+ 1) + ...+ bm−1(n+ 1)m−1)r

(b0 + b1n+ ...+ bm−1nm−1)

= r

(2)

Hence,

lim
n→∞

{log |xn+1| − log |xn|} = {log |r|}.

Since log |r| is irrational, the linear recurrence satisfies Benford’s Law.

Case 2 (Multiple Roots). If the characteristic polynomial has distinct roots r1, r2, ...rs with mul-

tiplicities y1, y2, ...ys respectively, then the linear recurrence will obey Benford’s Law.

Proof. Without loss of generality, suppose |r1| ≥ |ri| for i ∈ {2, 3, ..., s}. Note that xn can be

represented as

xn =

s∑
k=1

Pk(n− 1) · rn−1k

where Pi is a polynomial with deg(Pi) ≤ yi − 1.

Thus,

lim
n→∞

xn+1

xn
= lim
n→∞

P1(n)rn1 + P2(n)rn2 + ...+ Ps(n)rns
P1(n− 1)rn−11 + P2(n− 1)rn−12 + ...+ Ps(n− 1)rn−1s

= lim
n→∞

rn1 (P1(n) + P2(n)(r2/r1)n + ...+ Ps(n)(rs/r1)n)

rn−11 (P1(n− 1) + P2(n− 1)(r2/r1)n−1 + ...+ Ps(n− 1)(rs/r1)n−1)

= r1

(3)

Since

lim
n→∞

log |xn+1| − log |xn| = log |r1|

the linear recurrence will satisfy Benfords’ Law as long as log |r1| is irrational and P1(n− 1) 6= 0.

However, if r1 = −r2 and n is odd, then we can write

xn = (P1(n− 1) + P2(n− 2))rn−11 +

s∑
k=3

Pk(n− 1) · rn−1k

and if n is even,

xn = (P1(n− 1)− P2(n− 2))rn−11 +

s∑
k=3

Pk(n− 1) · rn−1k .
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By a similar approach, we have that

lim
n→∞

∣∣∣∣x2n+2

x2n

∣∣∣∣ = r21

and

lim
n→∞

∣∣∣∣x2n+3

x2n+1

∣∣∣∣ = r21.

If P1(n − 1) + P2(n − 1) 6= 0 and r1 6= ±10l for l ∈ Z, the sequence will obey Benford’s Law. By

Lemma 2, the sequences (x2n)n≥1 and (x2n+1)n≥1 satisfy Benford’s Law since

lim
n→∞

{
log

∣∣∣∣x2n+2

x2n

∣∣∣∣} = {2 log(r1)}

and

lim
n→∞

{
log

∣∣∣∣x2n+3

x2n+1

∣∣∣∣} = {2 log(r1)}.

Taken together, the sequence (xn) will satisfy Benford’s law as well.

Now that we’ve proven these two cases to be true, we have a strong corollary:

Corollary 1. All linear recurrences (xn) satisfy Benford’s Law excluding those which have r = 10l

for some l ∈ Z, where r is either the only root of the characteristic polynomial of (xn) or it is the

root of the characteristic polynomial of (xn) with the largest magnitude.

Proof. This directly follows from Case 1 and Case 2

Notice that linear recursive sequences will satisfy Benford’s Law for any other base b as long as

r 6= bn, n ∈ Z where r is either the only root of the characteristic polynomial of (xn) or it is the

root of the characteristic polynomial of (xn) with the largest magnitude.

6 Regular Sequences

Definition 1 (Regular Sequence). A sequence (xn) is said to be regular if after a finite number of

terms, the differences between successive terms in the sequence becomes periodic.

An example of a regular sequence is

(xn) := 1, 5, 7, 4, 3, 8, 10, 14, 22, 24, 28, 36, 38, 42, 50, ...
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The sequence of differences between successive terms of (xn) is

4, 2,−3,−1, 5, 2, 4, 8, 2, 4, 8, 2, 4, 8, ...

Eventually the differences between terms become periodic and the differences between terms rotates

through 2, 4, and 8. Since regular sequences demonstrate linear growth, most of them seem to not

satisfy Benford’s Law; however, we can still prove something interesting about them related to

Benford’s Law:

Lemma 4. (axn)n≥1 satisfies Benford’s Law, where (xn) is a regular sequence and a is a natural

number 6= 10k for k ∈ Z.

Proof. If we can show that

lim
k→∞

{log (axk)− log (axk−1)} = α

where α is a positive irrational number, then Lemma 2 shows that (axn) satisfies Benford’s Law.

However,

{log (axk)− log (axk−1)} =

{
log

(
axk

axk−1

)}
= {(xk − xk−1) log(a)}

and it becomes evident that the differences between log (axk) and log (axk−1) does not seem to

approach a constant irrational number, since xk − xk−1 is not constant ∀k. Because of this, we

take a new approach to the proof using the fact that (axn) is regular.

Since (axn) is a regular sequence, there exists some sufficiently large natural number d where

for k ≥ 1,

xd+mk+1 − xd+mk = c1,

xd+mk+2 − xd+mk+1 = c2,

...

xd+mk+m−1 − xd+mk+m−2 = cm−1

where all ci are constants and m is the length of the periodic differences (in the example above,

when the differences between terms rotated between 2,4, and 8, the length of the periodic differences

was 3). Now consider the m distinct sequences (xd+mk)k≥0, (xd+mk+1)k≥0, ..., (xd+mk+m−1)k≥0.

By showing that the subsequences (axd+mk), (axd+mk+1), . . . , (axd+mk+m−1) all satisfy Benford’s

Law, we have that (axn) satisfies Benford’s Law, simply because an infinite number of terms in the

sequence obey Benford’s Law, while finitely many may not (these are the terms before xd+mk).
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We know that for any i ∈ {0, 1, . . . ,m− 1}, the difference between any two successive terms in the

sequence xd+mk+i is

s =

m−1∑
i=1

ci

Hence, for any j ∈ N,

{log (axd+m(k+j)+i)− log (axd+m(k+(j−1))+i)} = {((xd+m(k+j)+i)− (xd+m(k+(j−1))+i)) log(a)}

= {s log(a)}.

Since a is not a power of 10 by the conditions of the lemma, {s log(a)} is irrational, and thus,

(axd+mk), (axd+mk+1), . . . , (axd+mk+m−1)

all satisfy Benford’s Law. Therefore (axn)n≥1 satisfies Benford’s Law.

Similar arguments used in the proof of this result could be used to prove the following conjecture

relating Ulam sequences to Benford’s Law:

Conjecture 3. (aun)n≥1 satisfies Benford’s Law, where (un) is the (1,2) Ulam sequence and a is

a natural number 6= 10k for k ∈ Z.

In Lemma 4, we proved that sequences of a similar form satisfy Benfords Law. Since we know

that some Ulam sequences are regular, we know that sequences of the form (aak) where (ak) is a

regular Ulam sequence satisfy Benfords Law.

To prove Conjecture 3, we use a similar approach to the proof of Lemma 4, where we partitioned a

sequence into subsequences, and showed that the base a raised to each of those subsequences will

satisfy Benford’s Law, and then pieced all of the subsequences together to prove that the sequence

as a whole will satisfy Benford’s Law:

Recall that

C :=

{
x ∈ R : (x mod λ) ∈

[
λ

3
,

2λ

3

]}
.

Note that we can partition C into equal, disjoint intervals:

C =
⋃

1≤j≤n

Ij

where the length of all Ij = ε for some arbitrarily small ε. All Ulam numbers in a subinterval have

approximately the same residual modulo λ since ε is very small. Thus, we may assume that all

Ulam numbers in the same subinterval have the same residual modulo λ.

For any subinterval Ik, we define a new sequence v(Ik, r) where v(Ik, i) is the ith smallest Ulam
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number in Ik (1 ≤ k ≤ n). According to Lemma 2, if we show that

lim
i→∞

{
log
(
av(Ik,i)

)
− log

(
av(Ik,i−1)

)}
= α

where α is a positive irrational number, then the sequence
(
av(Ik,r)

)
satisfies Benford’s Law. How-

ever, for any i,

{
log
(
av(Ik,i)

)
− log

(
av(Ik,i−1)

)}
=

{
log

(
av(Ik,i)

av(Ik,i−1)

)}
= {((v(Ik, i)− v(Ik, i− 1)) log(a)}

≈ {mλ log(a)}

for some m ∈ N0. Using Lemma 2 to prove that
(
av(Ik,r)

)
satisfies Benford’s Law is more tricky

than we expected. If we are able to study the properties of m, we can still salvage our proof to

show that
(
av(Ik,r)

)
satisfies Benford’s Law. We found that m happens to only be equal to the

numerators of continued fractions that approximate λ. For example, 22
9 ≈ λ, and so m happens

to equal 22 frequently. If we can show that m takes on a certain value an infinite number of

times, then the sequence will satisfy Benford’s Law. Lastly, if we can show that
(
av(Ik,r)

)
satisfies

Benford’s Law for almost all k, then we will have proven that (aun)n≥1 satisfies Benford’s Law,

by showing that an infinite number of terms in the sequence (aun) satisfy Benford’s Law, while

finitely many may not.

7 Conclusions and Future Directions

7.1 Ulam Sequences

Conjecture 2 about Ulam sequences suggests that they have some underlying periodic structures

that are yet to be formalized. Naturally, the concept of periodic functions leads our group to

believe that perhaps the function S(a,b) : N → N0 can be accurately approximated using some

Fourier Analysis. The two obstacles we must overcome in order to use Fourier Analysis are: the

fact that the graph of S(a,b) is a scatter plot, rather than a definite curve that can be approximated,

and the fact that as we graph S(a,b) at increasing values, these new points are simply laid on top

of previous points, and therefore we must have a growth factor k such that

lim sup
n→∞

|S(a,b)(n)− kc(n)|
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exists and is finite, where c(n) is the differentiable period function we are seeking. As seen in our

conjecture, we assume k to be equal to n; however, it is possible that the growth factor could be

√
n.

Because of how S(a,b) is defined, we know that U(a, b) = {n ∈ N : S(a,b)(n) = 1}. If we do find such

a function c that satisfies our conjecture, it is possible to find all the elements in U(a, b).

7.2 Periodic Ulam Sequences

Certain classes of Ulam sequences have been shown to be regular, but the proofs are clunky,

complicated, and yet conceptually simple. These proofs should not be hard to extend to other

classes of Ulam sequences, but they are solely due to computational complexity. For these reasons

the problem seems to lend itself excellently to computer proof. Conceivably, it would not be too

hard to write a program which, given the seeds a and b of a given Ulam sequence, will halt if the

sequence is regular and not halt if it is irregular.

7.3 Benford’s Law

We were able to prove that a wide variety of differently structured sequences satisfy Benford’s

Law. The fact that so many diverse sequences satisfy this strange elegantly expresses the beauty of

Benford’s Law, and how its essence lies in deep mathematics, rather than just applied mathematics.

An important lemma not mentioned in our paper (it has a trivial proof) states that sequences that

demonstrate linear growth do not satisfy Benford’s Law. It has been conjectured previously that

some linear growth structure can be found in the Ulam sequence, so perhaps a way to show this is

to prove that the regular Ulam sequence doesn’t satisfy Benford’s Law. Similarly, if we can prove

that the (1,2) Ulam sequence has a linear growth structure, then we can immediately prove that

the Ulam sequence does not satisfy Benford’s Law.
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