Washington Experimental Mathematics Lab Number Theory and Noise

Nile Wynar Lisa Yan

Mentors: Matthew Conroy, Gabriel Dorfsman-Hopkins, and Nikolas Eptaminitakis

Department of Mathematics University of Washington

Autumn 2017

Number Theory and Noise

This project investigates the possibilities arising from representing sets of positive integers as sound.

A digital audio file is created from a given set A of positive integers by setting sample number i to a non-zero constant c for all i in the set. All other samples are set to zero.

Number Theory and Noise

For example, the waveform for the primes starts like this:

We use the standard CD-audio sampling rate of 44100 samples per second, so $\Delta t = \frac{1}{44100} = 0.0000226757...$ seconds.

For many sets, the result is what most people would describe as *noise*.

Issues

- Working with large primes
- Sequences, like quadratics, grow too fast
- Computing limitations (e.g. numbers n such that $(2^n + 1)/3$ is prime)

$a_n = \lfloor n \log(n) \rfloor$

A000879: number of primes < the $(n^{th}prime)^2$

A001097: Twin Primes

A001951: Beatty Sequence of $\sqrt{2}$

a Beatty sequence is the sequence of integers found by taking the floor of the positive multiples of a positive irrational number.

$$a_n = \lfloor n\sqrt{2} \rfloor$$

Using Decimal Approximation of $\sqrt{2}$

$\sqrt{2}$ as 1.4

$\sqrt{2}$ as 1.4142

Future goals

- Finding sequences to focus on
- Understanding | n log(n) |
- Understanding Beatty sequences with different approximations of the irrational part