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1 Introduction

A Diophantine Equation is a polynomial equation, usually in two or more
unknowns with integer coefficients, in which we look for integer solutions.
The simplest case is where we look for integral solutions (x, y) in the linear
equation:

ax+ by = c

where a, b, c are known integers.

The study of Diophantine Equations and their analyses dates back to
the year AD 300, when a Greek mathematician, Diophantus of Alexandria,
wrote about them in his series of books, Arithmetica. It would be a problem
in Diophantus’ Arithmetica that led Pierre de Fermat in 1637 to annotate
within the margins of his own copy, famously known as Fermat’s Last The-
orem which would go on unresolved for the next 4 centuries.

As for our study of Diophantine Equations, we investigate the special
cases of the Pell Equation and Thue Equation, with the following questions
in mind: Are there any solutions to these equations? If so, how many are
there? Along the way, we also investigate rational approximations to irra-
tional numbers, a method known as Diophantine Approximation.
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1.1 The initial problem

Initially we found that Diophantine Equations look ”easy to solve” but are
actually very difficult to find solutions for. This brought up questions sur-
rounding understanding the set of solutions to specific Diophantine equations,
and how solutions to some equations provide approximations to certain al-
gebraic numbers. In general, no method or algorithm exists for finding sets
of solutions to all Diophantine equations, so we study specific cases in an
attempt to find some sort of pattern. (Hilbert’s 10th problem)

2 Progress

2.1 Theoretical

2.1.1 Diophantine Approximation

Our initial approach to investigate solutions of Diophantine Equations began
with learning about Diophantine Approximation in order to understand how
these solutions are represented.

Diophantine Approximation is the theory of approximations of real numbers
by rational numbers. But of course, any real number can be approximated
by a rational number with arbitrary accuracy, so the field of study is rather
to describe and determine how ”good” approximations can be.

We discuss an important theorem in Diophantine Approximation:

Theorem. (Dirichlet Approximation Theorem) Let ξ ∈ R and let
Q > 0 be a positive integer. Then there exists p,q ∈ Z such that (p, q) = 1
and

0 < q ≤ Q,

∣∣∣∣ξ − p

q

∣∣∣∣ ≤ 1

q(Q+ 1)
.

The implication of Dirichlet’s result is that if we are trying to approximate
the irrational number, ξ with the rational number p

q
, then the best approx-

imation we can achieve is determined by how small or large we allow our
denominator, q, to be. And a corollary of this result is that ξ would have an
infinite sequence of p, q that approximate it.
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As we will discuss later, continued fractions provide the best rational approx-
imation to ξ.

2.1.2 Pell Equation

A Pell Equation is any equation of the form x2 − dy2 = 1 where d is a
non-square integer. If d were a perfect square then the solution to the Pell
Equation would be trivial. When d is not a perfect square, the solutions
to (x +

√
dy)(x −

√
dy) = 1 are infinitely many, and correspond to units in

the quadratic field Q[
√
d]. It’s interesting to note that the Pell Equation

represents a hyperbola.

Examining solutions to the Pell Equation through the lens of Diophantine
Approximation we can approximate

√
d. We find that the error term on

the right side of the inequality is inversely-proportional to the square of y,
limiting our approximation even more. This leads to the following corollary
to our theorem on approximation:

Theorem. (Corollary to Dirichlet Approx. Theorem) There are in-
finitely many fractions x

y
∈ Q, x, y coprime integers, such that∣∣∣∣xy −√d

∣∣∣∣ ≤ 1

2
√
dy2

.

This implies that the fraction x
y

provides a ”good” approximation to the

algebraic number
√
d (where good means within the bounds of the error

term), and in fact that there exist infinitely many ”good” approximations
(which will be expanded upon later with the discussion of the continued
fraction algorithm).

2.1.3 Thue Equation

A Thue equation is of the form f(x, y) = c such that f(x, y) is a homogeneous
irreducible polynomial over Q, of degree at least 3, with integer coefficients,
and c being an integer. Unlike Pell equations, Thue equations have a finite
number of integer solutions. Apart from comparing their behavior to Pell
equations, we studied Thue equations because algorithms do exists to solve
them as well as a very convenient solution approximation method.
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The claim behind Thue Approximation is that an integral solution to
f(x, y) = c gives a good rational approximation, x

y
, to some root of the

associated polynomial f(X, 1) where (x, y) is a solution to the Thue Equation.
If the roots are distinct, x

y
can approximate only one of the roots which

implies that the approximation must be very good. We know that these
approximations are ”good” by the following proposition proposition: Let η
be the minimum distance between roots, η = mini 6=j|ξi − ξj|

Proposition. If f(x, y) = c for integers x, y 6= 0 , there exists a root ξ of
f(X, 1) with |ξ − x

y
| ≤ B|y|d, where B = |c|( 2

η
)d−1 depends only on f and c.

This proposition shows that for solutions of a Thue equation with degree
three or higher (d ≥ 3) we actually have very good approximations even if
the size of the denominator, |y|, is large, meaning that the accuracy of the
approximation does not depend on y.

2.2 Computational

2.2.1 Continued Fractions

The importance of Diophantine Approximation in finding solutions to Dio-
phantine Equations presented us with the need to implement an algorithm
that would compute the continued fraction expansion for a number. Figure
1 represents the algorithm we implemented in Sage/CoCalc.

Continued fractions are useful to us because an irrational number ex-
pressed as a infinite continued fraction provides an initial segment which we
can use as a rational approximation; these rational numbers are called the
convergents of the continued fraction.

Our algorithm works by taking the integer part at each step, ai, subtract-
ing that from the number at the beginning of the step, taking the reciprocal
of the remainder and repeating the process. This yields a list of integers
a0, a1, a2, · · · which are represented in a continued fraction expansion of an
irrational number, ξ as,

ξ = a0 +
1

a1 + 1
a2+···

.
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Figure 1: Our Sage implementation to compute the continued fraction ex-
pansion of a number

2.2.2 Thue Approximation

In order to solve Thue equations and see how accurately the solutions were
approximated, we created a CoCalc algorithm using Pari GP functions spe-
cific to solving Thue Equations.
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Figure 2: Our function to find and graph solutions to a given Thue Equation
as well as its root approximations

2.3 Results

2.3.1 Fundamental Unit Growth

We looked at the growth of the fundamental solutions to the Pell Equations
by looking at the maximum value between the (x, y) solution. As we can
see in the figure below, the fundamental solutions get larger as d increases.
Since these values correspond to fundamental units of Q[

√
d], we see that the

fundamental units grow.
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Figure 3: The x-axis is d ∈ Z and the y-axis is max (x, y) of u = x + y
√
d

where u is a fundamental solution of x2 − dy2 = 1

2.3.2 Thue Approximation

Below are the plotted solutions and approximations for an example Thue
equation. The red dots represent the solutions to the Thue equation as x

y

and the blue dots are the roots to f(X, 1).
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Figure 4: Complex plotting of solutions and approximations x
y

to the Thue

equation f(x, y) = x3 + x2y + 3xy2 − y3 = 17 with associated polynomial
f(X, 1) = X3 +X2 + 3X − 1
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3 Future directions

We conclude our research for the quarter on the topic of Thue Equations
with our next goal: to investigate Diophantine Equations of higher degrees
(> 3). Using what we previously learned about why Thue Equations have
finitely many solutions, we can expand on this knowledge to understand why
all equations of higher degrees must also have finitely many solutions. While
doing so, we will also begin our study of the general case, i.e. plane curves
of the form, f(X, Y ) = 0, where f ∈ Z[X, Y ].

Also, using our algorithm to compute fundamental solutions to Pell’s
Equation, we will continue gathering more results to expand on and con-
tribute to currently available data.
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