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1 Introduction

We were first interested in counting the density of integer lattice points in a ball
of radius R. Using a python program, we found that this number converges to
the area of the ball. Intuitively, one can imagine each lattice point as a pixel
on a screen. The larger the radius, the more pixels you can fit inside, and thus,
the closer the number of pixels will be to the actual area.

Figure 1: Circle with Lattice

We then started looking as the set of primitive points (m,n), where m and n
are both coprime integers. That is, the set of points where ged(m,n) = 1. Our
interest was in finding a relationship between the number of pairs of vectors
(m,n) in a ball of radius R with determinant k& and the area the ball itself.

Geometrically, the determinant is the area of the parallelogram formed by two
vectors.
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Figure 2: Geometric Depiction of Determinant

Mathematically we know the determinant is:
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Count(R, k)

To gather empirical evidence of a convergence for ————— as R increases,

we used python to create a Count(R, K) function which counts the number of
integer vector pairs within a ball of radius R that have determinant K.



As stated in the box below, Count(R, k) counts the number of integer vector
pairs in a ball of radius R that have a determinant k.

Let Count(R, k) denote the number of matrices
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such that
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ged(a,c) =1, ged(b,d) =1

Our code implements a Farey Tree to make computing Count(R, k) more effi-
cient. It is based off of the Farey sequence. The Farey sequence of order n is
the sequence of completely reduced fractions between 0 and 1 which when in
lowest terms have denominators less than or equal to n, arranged in order of
increasing size. This helps us generate the set of coprime pairs
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Figure 3: Farey Tree

We calibrated our code against the theorenﬂ that states

Count(R,1)
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LCounting Modular Matrices with Specified Euclidean Norm, Morris Newman



2 Research
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The first graph shows the result of our code for increasing R and values k =
1,2,3,4. Each Count(R, k) can be split up into a certain number of groups or
"orbits" based on the determinant k. This graph just looks at a single orbit for

each Count(R, k), which we see converges to 7 28 R increases.
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The second graph shows the total Count(R, k) for k = 1,2,3,4. We see that
each of the orbits contributes 6k to the total, and that the number of orbits
for a given k is equal to ¢(k). Hence, when you increase R the total count
of integer vector pairs(w)ith determinant k, proportional to the size of the ball
6p(k

(R?), converges to p




3 Future Goals

In our continuation of this project next quarter, we hope to explore these ideas
further by counting vectors in other latices beyond the integer lattice, as well
as by counting more than just pairs of vectors (triples, etc.)
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