Counting K-tuples in discrete sets

Washington Experimental Mathematics Lab Counting K-tuples in Discrete Sets

Kimberly Bautista Madeline Brown Andrew Lim Faculty Mentor: Jayadev Athreya Graduate Mentor: Samantha Fairchild

> Department of Mathematics University of Washington

> > Autumn 2017

Background

We are interested in counting the density of integer lattice points in a ball of radius R

Figure: Circle with Lattice

- Count the set of primitive points (m, n) (where gcd(m, n) = 1)
- The density normalized for πR^2 converges to $\frac{6}{\pi^2}$

Counting Vector Pairs

- Counting pairs of integer lattice points (m_1, m_2) and (n_1, n_2) with determinant k
- Determinant is the area of the parallelogram formed by two vectors

Figure: Geometric Depiction of Determinant

Determinant:

$$\det \begin{pmatrix} m_1 & m_2 \\ n_1 & n_2 \end{pmatrix} = m_1 n_2 - n_1 m_2 = k$$

 Recall Last Time: We coded a Count(R, K) function which counts the number of integer vectors within a ball (circle) of radius R that have a determinant K

Definition

Let Count(R, k) denote the number of matrices

$$A = \det \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

such that

$$a^{2} + b^{2} + c^{2} + d^{2} \le R^{2}$$
, $ad - bc = k$, $a, b, c, d \in Z$
 $gcd(a, c) = 1$, $gcd(b, d) = 1$

Figure: Farey Tree

- We wrote code that implements a Farey Tree to make computing R more efficient
- We calibrated our code against the theorem¹ that states

$$\lim_{R\to\infty}\frac{Count(R,1)}{R^2}=6$$

¹Counting Modular Matrices with Specified Euclidean Norm, Morris Newman

Graph

Figure: For
$$k = 1$$
, we see $\frac{Count(R, 1, 1)}{R^2} \rightarrow \frac{6}{k} = 6$

Graphs

Figure:
$$\frac{Count(R, k, 1)}{R^2} \rightarrow \frac{6\varphi(k)}{k}, \quad \forall k \in \mathbb{Z}$$

Future goals

- Count more than just pairs (triples, etc.)
- Count other visible points not in the integer lattice

