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1 Introduction

1.1 The initial problem

Our project investigates the possibilities arising from representing sets of
positive integers as sound. We wish to describe the properties of the sounds
using the properties of the sequences with number theory. A digital audio file
is created from a given set A of positive integers by setting sample number i
to a non-zero constant c for all i in the set. All other samples are set to zero.
We use the standard CD-audio sampling rate of 44100 samples per second,
∆t = 1

44100
= 0.0000226757 seconds. Take the set of prime numbers as an

example: whenever the program encounters a prime number that number is
assigned the number 1 and all composite numbers are given the number 0.
This can be seen in the waveform (Figure 1). Because we created our sounds
from a variety of integer sequences, there was no reason to expect the results
to be melodious, and they weren’t.

1.2 New directions

This quarter, we decided to explore more with the program PARI/GP, es-
pecially using it for large primes. Initially, we tried to program our own
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Figure 1: Example of the waveform derived from the sequence of prime
numbers

primality test in Python; however, it wasn’t efficient and would take too
long. PARI/GP implements an efficient primality method called “isprime”.
One minor problem with PARI/GP is that it takes longer to process for more
numbers and in order for our noises to be longer enough for us to analyze,
we need over a million numbers in a sequences. In addition, we decided to
start looking at the spectrogram and analyzing the anomaly in the spectro-
grams we dont understand. For example, the diagonal lines in A061910s
spectrogram.

2 Progress

2.1 Computational

Nile’s Focuses I was most interested in sequences involving the digit sum.
They are relatively periodic because of properties of the digit sum. Since
digitsum(n) = m⇒ digitsum(n+ 10k− 1) = m most of the time – with the
exception of numbers n that end in zeros – we can see why the sound would
be repetitive and basically periodic. Also, sequences such as these can be
decomposed into sequences of the form An = {n ∈ N | digitsum(n) = {a}}.
For example, the sequence A028839 which is the numbers n such that the
digit sum of n is a square can be decomposed into three separate sequences
who add up to the whole sequence. This is because the maximum possible
digit sum for integers up to 1.2 ∗ 106 is 55 so there are only six possible
squares {1, 4, 9, 16, 25, 36, 49}. So we can deduce that the total wave form
can be written as a sum of six different waveform. However, since a digit
sum of 1, 4, 9 and 49 are so unlikely, I approximated A028839 with the three
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Figure 2: Spectrogram of A061910: Numbers n such that the digit sum of
n2 is a square

sequences that represent the digitsum(n) = {42}, digitsum(n) = {52}, and
digitsum(n) = {62}. This process can be used on any sequence of this form
and so we can always determine how many separate wave forms are needed
for the decomposition of the original sequence.

Another sequence I was interested in was A061910 (Figure 2) which is the
sum of digits of n2 is a square. The spectrogram of this sound has diagonal
lines that we have not been able to explain yet. I created A061910 with the
base two digit sum and noticed that these diagonal lines start at the bottom
left corner, which is different than where they start with the base ten digit
sum. To try to understand this phenomenon, I created the sequence A237525,
which is numbers n such that the sum of digits of n3 is a cube. This sound’s
spectrogram also had these diagonal lines, however they are curved. I plan
to vary the set that determines which digit sums we take in our sequence and
the power we raise the integer to to see if either of these variables change the
diagonal lines in the sound’s respective spectrogram. Hopefully, this will help
us understand what property of this sequence creates these diagonal lines.

Lisa’s Focuses I was interested in the Beatty sequences, especially the

sequence of
⌊√

(2)n
⌋

taking the floor of the positive multiples of a positive

irrational number. First, I generated various Beatty sequences to see if I can
find a pattern, for example, I generated A022844, A286428, and A001951.
It seems that all the differences of the sequences seem to be 1 or 2. Later,
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Figure 3: Spectrograms of three sequences generated using decimal approxi-

mation of
⌊√

(2)n
⌋

I started just focusing on A001951, which is the sequence of
⌊√

(2)n
⌋
. I

was interested in how the programs interpret irrational numbers, so I used
both decimal approximation and continued fraction approximation to esti-
mate the sequence. I made a series of sound with b1.4nc, b1.41nc, b1.414nc,
and b1.4142nc (Figure ??). When I first made the sequence of b1.4nc with
Python, the spectrogram shows clicking sounds even though there shouldnt
be any. We quickly realized that the clicking sounds were due to a rounding
error in Python. We generated the sequence again in PARI/GP and the
clicking sounds disappeared. Because of the rounding errors with decimal
places, I decided to use fractions and approximate

√
2 using continued frac-

tions. I made another set of sounds with
⌊
7
5
n
⌋
,
⌊
17
12
n
⌋
,
⌊
41
29
n
⌋
,
⌊
99
70
n
⌋
,
⌊
239
169

n
⌋
,

and
⌊
577
408

n
⌋
. One interesting observation about the spectrograms is that as

the approximation becomes more accurate, there are more horizontal lines
in the spectrogram (Figure 4). This is because as the fraction gets closer to√

2, the denominator of the fraction gets larger. As the denominator gets
larger, the fundamental frequency is lower, and because our range only goes
up to 22, 000, we can see more horizontal lines on the spectrogram.

ss
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Figure 4: Spectrograms of all the sequences generated using continued frac-

tion of
⌊√

(2)n
⌋

2.2 Theoretical

Regarding bn log nc: We attempted to prove that the differences of this
sequence’s difference sequence is only in the set {−1, 0, 1}. We were able
to get upper and lower bounds for the difference sequence f(n + 1) − f(n),
where f(n) = bn log nc, using the approximation for the natural log of n
since log (n + 1)− log (n) < 1

n
.

1 + blog nc ≤ f(n + 1)− f(n) ≤ 2 + blog nc
Which yields that the difference sequence, d(n) ≤ 2. At least this doesn’t

contradict our original goal, however we still have work to do.

Regarding
⌊
p
q
n
⌋
: We observed some interesting patterns in sequences in

the form
⌊
p
q
n
⌋
, in which p and q are relatively prime, and started to prove

them:

• The sequence of differences of an =
⌊
p
q
n
⌋
, which is an =

⌊
p
q
n− p

q
(n− 1)

⌋
,

seems to have a period of q.

• The sequence of an =
⌊
p
q
n
⌋
mod q seems to have a period of p.

We have proved that the sequence of difference of
⌊
p
q
n
⌋
, which is

⌊
p
q
n− p

q
(n− 1)

⌋
,

does have a period of q. However, we still need to prove that q is the minimal
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number required for a period to happen through the fact that p and q are
relatively prime.

Regarding A295389: We contributed a sequence to the Online Encyclo-
pedia of Integer Sequences! The sequence is the numbers n such that the
sum of digits of n is squarefree.

3 Future directions

Next quarter, we will continue exploring sequences involving the base ten
digit sum as well as other bases. In addition, we wish to understand the
spectrograms of some of our sequences, such as, the spectrogram of inte-
gers n such that the sum of digits of n2 is a square, an = bn log nc, and
the spectrograms of the approximation sequences of the Beatty sequence

an =
⌊√

(2)n
⌋
. Since we’ve looked at the sequences of differences in various

sequences, we wish to compute the density of sequences within certain in-
tervals and see how these intervals affect the respective densities. Regarding
the Beatty sequences, we wish to understand Beatty sequences with differ-
ent approximations of the irrational part, and prove our observations: 1.The

period of the sequence of differences of an =
⌊
p
q
n
⌋

is q. 2.Prove that the

period of the sequence an =
⌊
p
q
n
⌋
mod q is p. Finally, we want to continue

discovering more novel sequences and contribute them to the OEIS.
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