
Towards Fast Computation of Exit Probabilities for
Maxima of Randomized Brownian Bridges

This document was prepared by James Pedersen and is the final report for the WXML group
consisting of Prof. Tim Leung, Theodore Zhao, Hunter Dean, Yanni Du, Emily Flanagan,

James Pedersen, and Yuyan Michelle Wang.

Summary

Motivated by a financial application, we explore ℙ(M∗ ≥ K), where M∗ is the
maximum of a randomized brownian bridge on [0, t] from a ∈ ℝ to E, E being some
continuous random variable with density.

Introduction
The probability that the maximum price that a stock could take between now and the end
of the trading period exceeds a given value K is of interest to those trading (American)
options for this stock. Suppose a trader knew that the probability that the maximum
future stock price (given the current price) exceeds Ps, the strike price, plus Po, the cur-
rent option price, were greater than .5. Then it is in the trader’s interest to buy options
(exactly how many is left to the trader’s discretion, although the larger the aforemen-
tioned probability, the more options one would consider buying), as it is more likely
than not that the maximum future stock price will be some number Pmax > Ps + Po,
in which case the trader could exercise the purchased options, sell the corresponding
stocks, and obtain a profit 1 of N

(

Pmax − (Ps + Po)
)

, N being the number of options
originally purchased. Therefore, if the future stock price is modeled as a randomized
brownian bridge on the interval [0, t], t > 0 (t represents the length of the remaining
trading period) from Pcurr, the current stock price, to E, a random variable with den-
sity (representing the trader’s best guess of the distribution of stock prices at the end of
the trading period), lettingM∗ denote the maximum possible value of this bridge, fast
computation ofℙ(M∗ ≥ K) for arbitraryK (one might want to compute the probability
that M∗ ≥ Ps + Po for many different values of Ps and Po, for instance, if one were
precomputing these probabilities in advance) is of interest.

Progress
We first proved the following lemma:

1Roughly speaking. The tax can be factored into Ps.
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Lemma 1. Let a, b ∈ ℝ, t > 0. LetM+ be the maximum of a brownian bridge from a
to b on [0, t]. Then

ℙ
(

M+ ≥ y
)

=

{

e
−2ab
t e

−2y2
t + 2ayt +

2by
t if y > max(a, b)

1 if y ≤ max(a, b)
(1)

The proof follows from formula 1.1.8 on p160 in [BS15], reproduced below:

ℙa
(

sup
0≤s≤t

Ws ≥ y,Wt ∈ dz
)

= 1
√

2�t
e−(|z−y|+y−a)

2
dz (a ≤ y) (2)

See the appendix for a complete proof. We then proved the following theorem:

Theorem 1. Let a ∈ ℝ, t > 0. Let M∗ be the maximum of a brownian bridge from
a to E on [0, t], where E is a continuous random variable having density function fE .
Let fM∗ denote the density function ofM∗ and fM+ (∗; b) denote the density function
of the maximum of a brownian bridge from a to b. Assume that there exists a function
B ∶ ℝ → ℝ such that ∫ ∞K B(x)dx converges and that for all but possibly finitely many
x,

|

|

|

|

fM∗ (x) − ∫

∞

−∞
fE(b)fM+ (x; b)db

|

|

|

|

≤ B(x) (3)

Then:
|

|

|

|

|

ℙ(M∗ ≥ K) −
[

ℙ(E ≥ K) + ∫

K

−∞
fE(b)e

−2ab
t − 2K

2
t + 2at K+

2b
t Kdb

]

|

|

|

|

|

≤ ∫

∞

K
B(x)dx

(4)

Proof. Noting that:

{b ∈ ℝ ∶ K ≥ max(a, b)} = (−∞, K]
{b ∈ ℝ ∶ K < max(a, b)} = (K,∞)

(5)

that by the lemma, for any b ∈ ℝ,

∫

∞

K
fM+ (x; b)dx =

{

e
−2ab
t − 2K

2
t + 2aKt + 2bKt if K > max(a, b)

1 if K ≤ max(a, b)

we have that:

−B(x) ≤ fM∗ (x) − ∫

∞

−∞
fE(b)fM+ (x; b)db ≤ B(x) (6)

−∫

∞

K
B(x)dx ≤ ∫

∞

K
fM∗ (x)dx − ∫

∞

K ∫

∞

−∞
fE(b)fM+ (x; b)dbdx ≤ ∫

∞

K
B(x)dx

(7)
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|

|

|

|

ℙ(M∗ ≥ K) − ∫

∞

K ∫

∞

−∞
fE(b)fM+ (x; b)dbdx

|

|

|

|

≤ ∫

∞

K
B(x)dx (8)

However, by Fubini’s theorem,

∫

∞

K ∫

∞

−∞
fE(b)fM+ (x; b)db dx = ∫

∞

−∞
fE(b)∫

∞

K
fM+ (x; b)dxdb (9)

and,

∫

∞

−∞
fE(b)∫

∞

K
fM+ (x; b)dxdb (10)

= ∫{b∈ℝ∶K>max(a,b)}
fE(b)∫

∞

K
fM+ (x; b)dxdb

+ ∫{b∈ℝ∶K≤max(a,b)}
fE(b)∫

∞

K
fM+ (x; b)dx db

= ∫

K

−∞
fE(b)e

−2ab
t − 2K

2
t + 2aKt + 2bKt db + ∫

∞

K
fE(b)db

= ℙ(E ≥ K) + ∫

K

−∞
fE(b)e

−2ab
t − 2K

2
t + 2aKt + 2bKt db

Remark. It is believed that in many cases of interest, the function B = 0 may be used
to satisfy the hypotheses of the theorem. See Figures 1 and 2 for numerical evidence of
this. However, it is not known in general whether:

fM∗ (x) = ∫

∞

−∞
fE(b)fM+ (x; b)db for all but possibly finitely many x (11)

Our previous attempts at proving the above equation have been unsuccessful as it ap-
pears that E and ME , the maximum of a brownian bridge from a to E, need not be
jointly continuous; referring to Definition 13.3 in [JP], given thatℙ [E ∈ (−∞, a)] ≠ 0,
we believe that, at least in some cases,N = (−∞, a) × {a} is a counterexample against
the claim that E andME are jointly continuous; see Figure 3 for numerical evidence
of this.

Conclusion
The theorem could potentially be used for fast computation of ℙ(M∗ ≥ K). For exam-
ple, in the case that E ∼  (�, �2) and assuming that the hypotheses of the theorem
can be satisfied with B = 0, we have that for any K > a,

ℙ(M∗ ≥ K) = ℙ(E ≥ K) +

(

−Δerf
(

|Δ|
√

2t�

)

+ |Δ|
)

exp
(

2(a−K)(a�2+K(t−�2)−�t)
t2

)

2|Δ|
(12)
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Figure 1: a = −2.7, E ∼  (0, 1). Se-
lected values of the right hand side of
Equation 11 (a closed form for fM+ (x, b)
was obtained and used in computations)
plotted in red over the empirical density
ofM∗ (50000 simulations).

Figure 2: a = 0, E ∼ 2(9). Selected
values of the right hand side of Equation
11 (a closed form for fM+ (x, b) was ob-
tained and used in computations) plotted
in red over the empirical density of M∗

(50000 simulations).

Figure 3: Simulated values (represented up to at most 6 decimal places) for
ℙ
[

(E,ME) ∈ (−∞, 0) × {0}
]

when E ∼  (−15, 1), a = 0. For each value of nsim,
that many values of (E,ME) were generated. Note that this probability would be zero
if E andME were jointly continuous.

where Δ = −2a�2 + 2K�2 −Kt+ �t. Thus, given reasonably fast implementations of
normCDF and erf (x), fast computation of ℙ(M∗ ≥ K) should follow. Further work
is needed to examine Equation 11 to potentially refine the hypotheses of the theorem.
Further work is also needed to compare the performance of the consequences of the
theorem (such as the above equation) against other methods for computingℙ(M∗ ≥ K).

This project has many possible future directions. All brownian bridges previously
mentioned in this paper have unit variance (for an introduction to brownian bridges,
see [Sie]), yet one might want to compute ℙ(M∗ ≥ K) in the context of a stock with
internal variance other than one. Furthermore, we have not yet attempted to obtain a
theorem similar to Theorem 1 for discrete, rather than continuous, endpoints E.

Finally, so far we have assumed that a brownian bridge with randomized right end-
point can be used to used to model future stock prices. However, a brownian bridge
can be negative, yet a stock price can never be negative. Further work is needed to ex-
amine how the frequency at which a brownian bridge with randomized right endpoint
dips below the x-axis depends on, say, the start of the bridge and the distribution of the
right endpoint (one could potentially prove a theorem similar to Theorem 1 concern-
ing the minimum of a randomized brownian bridge, rather than the maximum), and to
find workarounds if this frequency is too large in cases of interest. Geometric brownian
motion might be useful in this regard.
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Figure 4: 6-point discretizations were
used to approximate the brownian
bridges. Buy if ℙ(Max ≥ strike) > .5,
don’t buy otherwise.

Figure 5: The endpoint equals 0 with
probability 1∕2. Buy if ℙ(Max ≥ strike)
> .5, don’t buy otherwise.
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Appendix
The lemma is proven below.

Proof. Let (Bt) be a brownian bridge on [0, t] from a to b,

M+ ∶= sup
0≤s≤t

Bt.

It is well known (see p10 and p54 of [MP08], for instance) that ifWt is a 1-dimensional
brownian motion started at a, then for any t > 0,

ℙ(Wt ∈ S) = ∫S
p(t, a, z)dz, where p(t, a, z) = 1

√

2�t
e−

(a−z)2
2t

Suppose that y ≥ a is arbitrary. Then

ℙ(M+ ≥ y) = ℙ
(

sup
0≤s≤t

Bt ≥ y
)

(13)

= lim
�→0

ℙa( sup
0≤s≤t

Wt ≥ y ∣ |Wt − b| ≤ �) (Wt is a brownian motion on [0, t] starting at a)

(14)

= lim
�→0

ℙa(sup0≤s≤tWt ≥ y, |Wt − b| ≤ �)
ℙa(|Wt − b| ≤ �)

(15)

= lim
�→0

ℙa(sup0≤s≤tWt ≥ y, |Wt − b| ≤ �)
ℙa(b − � ≤ Wt ≤ b + �)

(16)

= lim
�→0

∫ b+�b−�
1

√

2�t
e−(|z−y|+y−a)2∕(2t)dz

∫ b+�b−�
1

√

2�t
e−(a−z)2∕(2t)dz

(For the numerator, see [BS15], formula 1.1.8 on p160)

(17)

= lim
�→0

d
d� ∫

b+�
b−�

1
√

2�t
e−(|z−y|+y−a)2∕(2t)dz

d
d� ∫

b+�
b−�

1
√

2�t
e−(a−z)2∕(2t)dz

(by L’Hospital’s rule)

(18)

= lim
�→0

1
√

2�t
e−(|z−y|+y−a)2∕(2t)

|

|

|

|b+�

d
d� [b + �] −

1
√

2�t
e−(|z−y|+y−a)2∕(2t)

|

|

|

|b−�

d
d� [b − �]

1
√

2�t
e−(a−z)2∕(2t)

|

|

|

|b+�

d
d� [b + �] −

1
√

2�t
e−(a−z)2∕(2t)

|

|

|

|b−�

d
d� [b − �]

(19)

= lim
�→0

1
√

2�t
e−(|z−y|+y−a)2∕(2t)

|

|

|

|b+�
+ 1

√

2�t
e−(|z−y|+y−a)2∕(2t)

|

|

|

|b−�

1
√

2�t
e−(a−z)2∕(2t)

|

|

|

|b+�
+ 1

√

2�t
e−(a−z)2∕(2t)

|

|

|

|b−�

(20)
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= lim
�→0

1
√

2�t
e−(|b+�−y|+y−a)2∕(2t) + 1

√

2�t
e−(|b−�−y|+y−a)2∕(2t)

1
√

2�t
e−(a−(b+�))2∕(2t) + 1

√

2�t
e−(a−(b−�))2∕(2t)

(21)

=

2
√

2�t
e−(|b−y|+y−a)2∕(2t)

2
√

2�t
e−(a−b)2∕(2t)

(22)

= e
(a−b)2
2t e

−(|b−y|+y−a)2
2t (23)

Therefore, if y > max(a, b) is arbitrary, y ≥ a and |b − y| = y − b, so

ℙ
(

M+ ≥ y
)

= e
(a−b)2
2t e

−(y−b+y−a)2
2t

= e
−2ab
t e

−2y2
t + 2ayt +

2by
t

(24)

Furthermore, for any y ≤ max(a, b), ℙ(M+ ≥ y) = 1, asM+ is the maximum of a
brownian bridge starting at a and ending at b. Thus,

ℙ
(

M+ ≥ y
)

=

{

e
−2ab
t e

−2y2
t + 2ayt +

2by
t if y > max(a, b)

1 if y ≤ max(a, b)
(25)
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