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1 Notation

bxc is the floor function, which gives the largest integer less than or equal to x ∈ R.

n!! =

bn−1
2 c∏

k=0

(n− 2k) = n · (n− 2) · (n− 4) · · · is the double factorial.

w0 = [n, n− 1, . . . , 1] ∈ Sn is the permutation mapping x 7→ n+ 1− x.

Unless otherwise specified, we write permutations in one-line notation.

2 Introduction

In this project we investigate a certain type of algebraic structure found in symmetric groups.
Our work builds off of the theory developed in the paper “Parabolic Double Cosets in Coxeter
Groups,” authored by Sara Billey, Matjaz̆ Konvalinka, T. Kyle Petersen, William Slofstra,
and Bridget Tenner. We will provide a brief summary of this theory in the following section
for the purpose of defining terminology and contextualizing our results. A much more com-
prehensive treatment of this material can of course be found in [1].

3 Background

We begin with some definitions. An adjacent transposition is a permutation that swaps a
single pair of adjacent elements. One example of this is [12435] ∈ S5, which we denote s3 be-
cause it swaps the elements (3↔ 4). In our work it is useful to think of the symmetric group
as being generated by the adjacent transpositions, Sn = 〈si | i = 1, 2, . . . , n− 1〉. A parabolic
subgroup of Sn is any subgroup that can be generated by adjacent transpositions. That is, a
parabolic subgroup is a subgroup of the form WI = 〈si | i ∈ I〉 where I ⊆ {1, 2, . . . , n − 1}.
A parabolic double coset is then defined to be a two-sided coset with respect to two parabolic
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subgroups, WIwWJ = {pwq | p ∈WI , q ∈WJ}.

The underlying question that motivates our work is simple: How many parabolic double
cosets are in Sn? Due to the complex structure of parabolic double cosets, counting these
objects requires more work than one might expect. This question is answered in [1] in the
context of finitely generated Coxeter groups.

The length of a permutation w ∈ Sn is formally defined to be the minimum number k of
adjacent transpositions in a reduced expression si1 · · · sik = w. It is equal to the number of
inversions of w and is denoted `(w). That is, `(w) = #{(i, j) | i < j and w(i) > w(j)}. One
very useful fact is that every parabolic double coset has a unique minimal length element.
We define right and left ascent and descent sets of a permutation w ∈ Sn as follows:

AscR(w) = {1 ≤ j ≤ n− 1 | w(j) < w(j + 1)}
DesR(w) = {1 ≤ j ≤ n− 1 | w(j) > w(j + 1)}

and AscL(w) = AscR(w−1) and DesL(w) = DesR(w−1). It can be shown that a permuta-
tion w is the minimal length element of the parabolic double coset WIwWJ if and only if
I ⊆ AscL(w) and J ⊆ AscR(w).

One should notice that there are multiple ways of writing the same parabolic double coset.
For this reason we define a presentation of a parabolic double coset C ⊆ Sn to be a triple
(I, w, J) such that C = WIwWJ . We say that a presentation is lex-minimal if w is the
minimal length element of WIwWJ and if WIwWJ = WI′w

′WJ′ then either |I| < |I ′| or
|I| = |I ′| and |J | ≤ |J ′|. This is a very important notion to establish if our goal is to
count parabolic double cosets. In particular, every lex-minimal presentation corresponds to
a unique parabolic double coset, and it is proven in [1] that every parabolic double coset has
a unique lex-minimal presentation.

We will use Cw to denote the set of parabolic double cosets whose minimal-length element is
w, C∗w to denote the set of lex-minimal presentations of elements in Cw, and cw = |C∗w| = |Cw|
to denote the number of parabolic double cosets whose minimal-length element is w. The
main formula presented in [1] counts the number of parabolic double cosets in Sn by summing
cw over all permutations w ∈ Sn. One of the main reasons this project exists is because the
authors believed there to be a more efficient way of counting parabolic double cosets. Our
primary goal is to find such a way or prove that one does not exist. We have made some
progress in this regard.

4 Progress

We began our work by collecting some data on Sn for small n. In particular, we looked at
the values cw for each permutation w ∈ Sn. This led us to the question of when cw = cw′ for
two permutations w 6= w′. We were able to prove the following.

Lemma 1. Let g : Sn → Sn be given by g(w) = w−1, and let w ∈ Sn be an arbitrary
permutation. Consider the function G : Cw → Cw−1 mapping a parabolic double coset to its
image under g. Then G is a bijection so that cw = cw−1 .
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Proof. We will first show that for any parabolic double coset WIwWJ ⊆ Sn, g(WIwWJ) =
WJw

−1WI (i.e. WJw
−1WI is the image of WIwWJ under g).

Let y ∈ g(WIwWJ). Then y = g(x) = x−1 for some x ∈ WIwWJ . Then we can write y =
((si1 · · · sim)w(sj1 · · · sjn))−1 = (sjn · · · sj1)w−1(sim · · · si1) for some m,n ∈ N, i1, . . . , im ∈ I,
and j1 . . . , jn ∈ J . Then y ∈WJw

−1WI by definition.

If y ∈ WJw
−1WI then y = (sjn · · · sj1)w−1(sim · · · si1) = ((si1 · · · sim)w(sj1 · · · sjn))−1 for

some m,n ∈ N, i1, . . . , im ∈ I, and j1 . . . , jn ∈ J . Taking x = (si1 · · · sim)w(sj1 · · · sjn) ∈
WIwWJ , we see that y = g(x) and thus y ∈ g(WIwWJ).

Our goal is now to show that G is a bijection. We first verify that G maps into Cw−1 . Let
D ∈ Cw. Then w ∈ D so we can write D = WIwWJ for some I, J ⊆ {1, 2, . . . , n − 1}.
Since w is the minimal length element in WIwWJ , we have I ⊆ AscL(w) and J ⊆ AscR(w).
Then I ⊆ AscR(w−1) and J ⊆ AscL(w−1). This means w−1 is the minimal length element
in WJw

−1WI = G(D), and thus G(D) ∈ Cw−1 .

To see that G is a bijection, notice that G is invertible with G−1 : Cw−1 → Cw also
mapping a set to its image under g. We can use the same argument to show that G−1

maps into Cw. Let E ∈ Cw−1 . Then w−1 ∈ E so we can write E = WJw
−1WI for some

I, J ⊆ {1, 2, . . . , n − 1}. Since w−1 is the minimal length element in WJw
−1WI , we have

J ⊆ AscL(w−1) and I ⊆ AscR(w−1). Then J ⊆ AscR(w) and I ⊆ AscL(w). This means w
is the minimal length element in WIwWJ = G−1(E), and thus G−1(E) ∈ Cw.

It is obvious that for any D ∈ Cw, G−1(G(D)) = D and for any E ∈ Cw−1 , G(G−1(E)) = E
(if we take a set of permutations and invert each element twice, we clearly end up with the
same set).

Lemma 2. Let f : Sn → Sn be given by f(x) = w0xw0. Then the presentation (I, w, J) is
lex-minimal if and only if (w0(I), f(w), w0(J)) is. Thus f induces a bijection between C∗w
and C∗f(w) so that cw = cf(w). This bijection is given explicitly by F : C∗w → C∗f(w) with

F ((I, w, J)) = (w0(I), f(w), w0(J)).

Proof. Since f and w0 are involutions, it is sufficient to prove that (w0(I), f(w), w0(J)) is
lex-minimal whenever (I, w, J) is lex-minimal.

We will first show that f preserves lengths in that `(w) = `(f(w)) for all w ∈ Sn. We will
do this by proving that for all permutations w ∈ Sn, (i, j) is an inversion of w if and only if
(w0(j), w0(i)) is an inversion of f(w). Again, since f and w0 are involutions we only need to
prove one direction.

Suppose (i, j) is an inversion of w. Then i < j and w(i) > w(j). Then w0(j) < w0(i). Notice
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that

w(j) < w(i) ⇐⇒ w0(w(j)) > w0(w(i))

⇐⇒ w0(w(w0(w0(j)))) > w0(w(w0(w0(i))))

⇐⇒ f(w)(w0(j)) > f(w)(w0(i)).

We now have w0(j) < w0(i) and f(w)(w0(j)) > f(w)(w0(i)), thus (w0(j), w0(i)) is an inver-
sion of f(w). It follows that the map (i, j) 7→ (w0(j), w0(i)) is a bijection between inversions
of w and inversions of f(w), and thus `(w) = `(f(w)) for all w ∈ Sn.

Next we show that Ww0(I)f(w)Ww0(J) is the image of WIwWJ under f . Observe that

Ww0(I) = 〈sw0(i) | i ∈ I〉 = 〈w0siw0 | i ∈ I〉 = w0WIw0.

The last equality here comes from the fact that w0 = w−10 . That is, we can write any element
y ∈ 〈w0siw0 | i ∈ I〉 as

y = (w0si1w0)(w0si2w0) · · · (w0simw0) = w0si1si2 · · · simw0.

Then for any x ∈Ww0(I)f(w)Ww0(J) = (w0WIw0)(w0ww0)(w0WJw0) we can write

x = (w0pw0)(w0ww0)(w0qw0) = w0pwqw0 = f(pwq)

for some p ∈WI and q ∈WJ , and thus Ww0(I)f(w)Ww0(J) ⊆ f (WIwWJ).

Similarly, if we let x ∈ f (WIwWJ) then there exist p ∈ WI and q ∈ WJ such that x =
f(pwq) = w0pwqw0 = (w0pw0)(w0ww0)(w0qw0) and thus x ∈ (w0WIw0)(w0ww0)(w0WJw0) =
Ww0(I)f(w)Ww0(J) by definition. We have shown that Ww0(I)f(w)Ww0(J) ⊆ f (WIwWJ) and
f (WIwWJ) ⊆Ww0(I)f(w)Ww0(J), therefore Ww0(I)f(w)Ww0(J) = f (WIwWJ).

We now return to our original goal. Let (I, w, J) be a lex-minimal presentation. Then w is
the minimal length element in WIwWJ and if WIwWJ = WI′w

′WJ′ then either |I| < |I ′| or
|I| = |I ′| and |J | ≤ |J ′|. Since Ww0(I)f(w)Ww0(J) = f (WIwWJ) and f preserves lengths,
f(w) is the minimal length element in Ww0(I)f(w)Ww0(J).

Now supposeWw0(I)f(w)Ww0(J) = WI′w
′WJ′ . Then f (WI′w

′WJ′) = Ww0(I′)f(w′)Ww0(J′) =
WIwWJ . Since w0 is a bijection, |w0(I)| = |I|, |w0(J)| = |J |, |w0(I ′)| = |I ′|, and |w0(J ′)| =
|J ′|. Then by lex-minimality of (I, w, J), either |w0(I)| = |I| < |w0(I ′)| = |I ′| or |w0(I)| =
|I| = |w0(I ′)| = |I ′| and |w0(J)| = |J | ≤ |w0(J ′)| = |J ′|. Then (w0(I), f(w), w0(J)) is
lex-minimal by definition.

Combining the two lemmas above, we obtain the following.

Corollary 1. For all permutations w ∈ Sn,

cw = cw−1 = cw0ww0
= cw0w−1w0

.
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We now consider the equivalence relation on Sn given by w ∼ z if z ∈ {w,w−1, w0ww0, w0w
−1w0}.

Let [w] denote the equivalence class of w ∈ Sn with respect to this relation,

[w] = {w,w−1, w0ww0, w0w
−1w0}.

For now we will refer to these as WXML equivalence classes.

Theorem 1. The number of WXML equivalence classes in Sn is

1

4

n! +
(

2
⌊n

2

⌋)
!! + 2 + 2

bn2 c∑
k=1

1

k!

k−1∏
j=0

(
n− 2j

2

) .

Proof. Consider the identity e : Sn → Sn and the functions f and g as defined earlier. Notice
that for any w ∈ Sn,

f(g(w)) = f(w−1) = w0w
−1w0 = (w0ww0)−1 = g(w0ww0) = g(f(w))

so that G = {e, f, g, fg} is a group under function composition (it is isomorphic to Z/2×Z/2).
Consider also the group action π : G × Sn → Sn given by π(h,w) = h(w). By Burnside’s
Lemma [2, Theorem 17.1],

#{[w] | w ∈ Sn} = #{Orb(w) | w ∈ Sn} =
1

4

∑
h∈G

|Fixh(Sn)|

where Fixh(Sn) = {w ∈ Sn | h(w) = w}. This means we can count the number of WXML
equivalence classes by counting the number of fixed points of each function e, f, g, fg.

The identity e fixes every element in Sn so |Fixe(Sn)| = |Sn| = n!.

To count the number of permutations fixed by f , first note that

w = w0ww0 ⇐⇒ w(x) = w0(w(w0(x))) ∀x ∈ {1, 2, . . . , n}
⇐⇒ w(x) = n+ 1− w(n+ 1− x) ∀x ∈ {1, 2, . . . , n}
⇐⇒ w(n+ 1− x) = n+ 1− w(x) ∀x ∈ {1, 2, . . . , n}.

Let us now construct a permutation w ∈ Sn that is fixed by f . Suppose first that n is odd.
Then since n+1

2 = n+ 1− n+1
2 , it is necessary by the equivalence above that w

(
n+1
2

)
= n+1

2 .
This leaves us with n − 1 choices for w(1). Once w(1) is chosen, we are forced to set
w(n) = n+ 1−w(1). This leaves us with n− 3 choices for w(2). Continuing in this manner
until we reach n+1

2 , we find that there are a total of (n − 1) · (n − 3) · · · · · 4 · 2 = (n − 1)!!
choices. If n is even we follow the same procedure, the only difference being there is no
“middle number” n+1

2 that is predetermined before we make any choices. It follows that
there are n · (n− 2) · (n− 4) · · · · · 4 · 2 = n!! choices if n is even. In summary, the number of
elements fixed by f is equal to n!! if n is even and (n− 1)!! if n is odd. This can be written
more compactly as |Fixf (Sn)| = (2bn2 c)!!.
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Next we count the number of fixed points of g. It is a well-known result in elementary group
theory that the involutions in Sn are precisely products of disjoint transpositions. To con-
struct an involution, we first make the (mutually exclusive) choice of how many transpositions
to use. Call this choice k. If n is even then 0 ≤ k ≤ n

2 , and if n is odd then 0 ≤ k ≤ n−1
2 . It

is more convenient to write 0 ≤ k ≤ bn2 c for all n ∈ N. Once k is fixed, there are
(
n
2

)
choices

for the first transposition. Then since the transpositions are required to be disjoint, there
are

(
n−2
2

)
choices for the next transposition. We proceed until we have chosen all k disjoint

transpositions, which gives us a current total of

k−1∏
j=0

(
n− 2j

2

)
choices for each fixed k. Since disjoint cycles commute, order does not matter so we have
over counted by a factor of k!. Putting all this information together, we obtain

|Fixg(Sn)| = 1 +

bn2 c∑
k=1

1

k!

k−1∏
j=0

(
n− 2j

2

)
.

Lastly, observe that that |Fixfg(Sn)| = |Fixg(Sn)|, as the map w 7→ w0w is a bijection
between Fixg(Sn) and Fixfg(Sn):

w ∈ Fixg(Sn) ⇐⇒ w = w−1

⇐⇒ w0w = w0w
−1

⇐⇒ w0w = w0w
−1w0w0

⇐⇒ w0w = w0(w0w)−1w0

⇐⇒ w0w ∈ Fixfg(Sn).

We then sum each of these terms and divide by 4 to obtain the formula above.

Prior to our work, this sequence (an = the number of WXML equivalence classes in Sn) was
not in the OEIS. It has since been added at A300931.

5 Future Goals

Throughout this quarter we have been writing code with the goal of implementing the main
formula in [1] for counting the number of parabolic double cosets in Sn. This code is not yet
finished. We would also like to write a program to visualize the w-ocean of a permutation
w ∈ Sn (a w-ocean is a diagram that represents the combinatorial structure of w and can be
used to compute cw). Another achievable goal is to characterize the sets {w ∈ Sn | cw = k}
for small k. It would also be valuable to investigate what these sets look like for larger values
of k.
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