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Introduction

The initial problem

Our project investigates the possibilities arising from representing sequences
of positive integers as sound. We wish to describe the properties of the sounds
using the properties of the sequences with number theory. A digital audio file
is created from a given set A of positive integers by setting sample number i
to a non-zero constant c for all i in the set. All other samples are set to zero.
We use the standard CD-audio sampling rate of 44100 samples per second,
∆t = 1

44100
= 0.0000226757 seconds. Take the set of prime numbers as an

example: whenever the program encounters a prime number that number is
assigned the number 1 and all composite numbers are given the number 0.
This can be seen in the waveform (Figure 1).

Progress

Computational

Sherry’s Focuses I started my work with sequences involving prime num-
bers, and later focused on sequences involving digital roots. One interesting
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Figure 1: Example of the waveform derived from the sequence of prime
numbers

sequence I have discovered is A034048: numbers with multiplicative digital
root value 0.

The definition of multiplicative digital root of an integer is that multiply-
ing the digits of this integer, then multiplying the digits of numbers derived
from it, until the remaining number has only one digit. The remaining num-
ber is the multiplicative digital root of this integer.

One interesting property of this sequence is that unlike many other se-
quences I have encountered, of which the natural density is often zero, this
sequence actually has natural density 1.

Bobby’s Focuses I explored variances in Beatty sequences of different
irrational numbers, as well as studying the reasons why Beatty sequences
sound so similar regardless of which irrational they are based off of. I used
approximations of the irrational via continued fractions as well as Fourier
transforms to make determinations about why Beatty sequences sound the
way they do.

Some possilbe explanations for why Beatty sequences have the particular
sound they do is seen in the Fourier plots that display many frequencies
within the Beatty sequences that are nearly overlapping but not quite. I
assume this creates a phenomenon similar to beat frequencies and accounts
for why Beatty sequences are generally unpleasant sounding.

Other reasoning for why Beatty sequences sound as they do can be seen
in the fact that the difference sequences are near periodic, describing why
they have such steady sounds and don’t tend to vary to much from beginning
to end.
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Figure 2: Spectrogram of A061910: Numbers n such that the digit sum of
n2 is a square

Nile’s Focuses My goal with the sequence A061910, sum of digits of n2 is
a square, from last quarter, was to explain the diagonal lines in the sound’s
spectrogram (Figure 2). Since these diagonal lines persisted when created the
spectrogram for A237525, sum of digits of n3 is a cube, I assumed that the
diagonal line phenomenon in the spectrogram was a property of taking the
sum of digits of a number raised to a power and finding the digit sums that
were integers raised to that same power. However, I found that this was not
the case. I calculated that the most common digit sum of n2 up to 106 is 54.
Then I created the sound that corresponded to numbers n such that the sum
of digits of n2 is 54. I expected the diagonal lines to disappear, instead they
were more prevalent (Figure 3). This shows that the diagonal line property
in A061910’s spectrogram does not come from this sequence’s very specific
definition, but rather something that probably arises from taking the digit
sum of integers raised to a power. However, I am still not sure about this and
am unable to explain this phenomenon. Hopefully, next year I can continue
this exploration.

After running in circles around A061910, I decided to move on but I
continued to work with the theme of digit sums as I did last quarter. I
discovered an interesting sequence that I wanted to focused on, A004207.
This sequence is the sum of digits of previous terms in base 10 starting with
a0 = 1. The nth term is represented by

an = an−1 + s(an−1, 10),
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Figure 3: Spectrogram of A061910 variation: Numbers n such that the digit
sum of n2 is 54

where s(x, 10) is the sum of digits of x in base 10. Judging by the spectrogram
(Figure 4), one would think the sound is periodic. It looks as though the
sound repeats itself every two seconds or so. However, I used Pari/GP to
calculate terms in the sequence farther to see if this sound was periodic.
6666706 is in the sequence, so I created the sound starting with a0 = 6666706.
Although the spectrogram looks very similar, in that it has a repetitive two
second pattern, the sound itself sounds different. This led me to believe that
the sound is not periodic and I prove this in the section below.

There is a dark spectral line at 14701 Hz, and 44100/14701 = about 3.
This arises from the fact that there are no multiples of three in the sequence
A004207. This sparked my curiosity to look at this sequence in other bases.
In the next section I will prove a few facts about the sequences formed by
the sum of digits of previous terms in other bases.

Theoretical

Regarding A034048 (Numbers with multiplicative digital root 0)
has natural density 1:

Lemma 1. If the natural density of a set of positive integers is 0, then the
natural density of its complement with respect to positive integers is 1.

Proof. Let S be a set of positive integers. Let x ∈ Z>0. Then, let S(x) be the
number of elements of S that are less than x. Suppose the natural density of
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Figure 4: Spectrogram of A004207: Sum of digits of previous terms with
a0 = 1

S is 0; that is, suppose

lim
x→∞

S(x)

x
= 0.

Let SC be the complement of S with respect of Z>0. Then, let SC(x) be
the number of elements of SC that are less than x. Since S and SC are
complements of each other with respect to Z>0,

S(x) + SC(x) = x.

Therefore,

lim
x→∞

SC(x)

x
= lim

x→∞

x− S(x)

x

= lim
x→∞

(
1− S(x)

x

)
= 1− lim

x→∞

S(x)

x
= 1.

where the nature density of SC is lim
x→∞

SC(x)
x

. Hence, the natural density of

SC is 1.

Lemma 2. Suppose S is a set of positive integers, and the natural density of
S is 0. Then the natural density of any subset of S is 0.
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Proof. Let S be a set of positive integers. Suppose S has natural density 0.
Let x ∈ Z>0. Then, let S(x) be the number of elements of S that are less
than x. Hence,

lim
x→∞

S(x)

x
= 0.

Let T ⊆ S. Let T(x) be the number of elements of T that are less than x,

0 ≤ T (x) ≤ S(x).

Therefore,

0 ≤ T (x)

x
≤ S(x)

x
.

Since lim
x→∞

S(x)
x

= 0, according to the Squeeze Theorem,

lim
x→∞

T (n)

n
= 0.

Therefore, the natural density of T is 0.

Lemma 3. Let a, n be positive integers. The partial sum of a n-term power

series
n∑

i=1

ai is an+1−a
a−1 .

Proof. Let a, n be positive integers. Let L =
n∑

i=1

ai. Then

aL =
n+1∑
i=2

ai,

and so

L =
1

a− 1
(a− 1)L

=
1

a− 1
(aL− L)

=
1

a− 1
(
n+1∑
i=2

ai −
n∑

i=1

ai)

=
an+1 − a
a− 1

.
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Theorem. A sequence of positive integers A034048 is defined as numbers
with multiplicative digit root value 0. The natural density of A034048 is 1.

Proof. Let x ∈ Z>0. Let A(x) = |{a ∈ Z>0 : a /∈ A034048∧a ≤ x}|. To prove

that the natural density of A0304048 is 1, we want to show that lim
x→∞

A(x)
x

= 0.

Let F(x) = |{f ∈ Z>0 : f has no zero digits ∧ f ≤ x}|. For every integer
with multiplicative digit root value 6= 0, it must has no zero digits. Therefore,
if lim

x→∞
F (x)
x

= 0, then lim
x→∞

A(x)
x

= 0, and so the natural density of A034048 is

1.

Assume x has n digits. Then

x ≥ 10n−1,

and

F (x) ≤
n∑

i=1

9i =
9n+1 − 9

8
,

where 9i is the number of i-digit integers which have no zero digits.

Therefore,

F (x)

x
≤

9n+1−9
8

10n−1 ,

where we obtain lim
n→∞

9n+1−9
8

10n−1 as following:

lim
n→∞

9n+1−9
8

10n−1 = lim
n→∞

(
9n+1

8× 10n−1 −
9

8× 10n−1

)
= lim

n→∞

(
81

8

(
9

10

)n−1

− 9

8

(
1

10

)n−1
)

= 0.

Since lim
n→∞

9n+1−9
8

10n−1 = 0, lim
x→∞

F (x)
x

= 0. Hence, lim
x→∞

A(x)
x

= 0, and the

natural density of A034048 is 1.

Regarding an = an−1 + s(an−1, b):
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Definitions

• A010062, A010063, A010065, A010066, A010068, A010069, A010071,
A010072, A004207: sum of digits of all previous terms in base 2, 3, 4,
5, 6, 7, 8, 9, and 10 respectively with a0 = 1

• s(n, b) = sum of digits of n in base b

• an = an−1 + s(an−1, b), represents the terms of a sequence usually de-
fined as the sum of digits in base b of all previous terms

• dn, the difference sequence of an in base b, dn = an − an−1 = s(an−1, b)
for n > 0

• N(n, b) = number of digits of n in base b

Theorem. The waveform created from a sequence of the form
an = an−1 + s(an−1, b) is not periodic.

Proof. Assume that the waveform of an is periodic. Define the following
characteristic equation that is used to define the waveform,

χ(n) =

{
1 if ∃i : n = ai

0 if ∀i : n 6= ai
.

Since χ(n) = 1 corresponds to the top of the sound waves, the difference
sequence represents the distance between the peaks of the waves, so it is
necessary for dn to be periodic in order for the waveform of an to be periodic.
Since dn is positive and finite for all n, this implies that dn is bounded. So
there exists a real number M > 0 such that dn < M for all natural numbers
n. We will produce M consecutive integers, each of which will have a sum of
digits greater than M . Let

x0 =
M−1∑
j=0

bN(M,b)+j = (1 . . . 1︸ ︷︷ ︸
M ones

N(M, b) zeros︷ ︸︸ ︷
0 . . . 0)b

So define xn = x0 + n for 1 ≤ n < M . xn is defined with N(M, b) many
zeros. Let

L = (1 0 . . . 0︸ ︷︷ ︸
N(M, b) zeros

)b > M
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so adding M to L, does not change the leading 1 of L. So s(xn, b) > M for
all xn. If ai < xj and ai+1 > xj for all i and all xj between x0 and xM , then
ai+1 − ai > M since xM − x0 = M . But ai+1 − ai = di+1 < M . So since xn
consists of M many consecutive integers and since dn < M for all n, for at
least one i and j, ai = xj. So then s(ai, b) > M , but di+1 = s(ai, b) > M so
this contradicts that the difference sequence is bounded. So the waveform of
an is not periodic.

Theorem. For n > 0, an ≡ 2an−1 (mod b− 1).

Proof. Let

N = (nm . . . n0)b =
m∑
i=0

ni · bi

represent N in base b. So N ≡
∑m

i=0 ni = s(N, b) (mod b− 1). Since
an = an−1 + s(an−1, b), then an ≡ an−1 + an−1 (mod b− 1) so
an ≡ 2 · an−1 (mod b− 1).

Corollary 1. The sequence A004207 mod 9, is (1 2 4 8 7 5) repeating and
none of its terms are multiples of three.

Proof. b = 10, so b − 1 = 9. By the theorem above, an ≡ 2an−1 (mod 9).
a0 = 1 so a1 = 1. Hence, a1 ≡ 1 (mod 9) which implies that a2 ≡ 2 (mod
9), so a3 ≡ 4 (mod 9), a4 ≡ 8 (mod 9), a5 ≡ 16 ≡ 7 (mod 9), a6 ≡ 14 ≡ 5
(mod 9), a7 ≡ 10 ≡ 1 (mod 9), and so the cycle continues. If n = 3m for
some integer m, then n ≡ 0 or 3 or 6 (mod 9). Since (1 2 4 8 7 5) does not
contain 0, 3, or 6, then there are no multiples of 3 in the sequence.

Corollary 2. For n > 2, all terms of the sequence A010066 are multiples of
four.

Proof. b = 5, so b−1 = 4. a0 = 1 by definition, so a1 = 1 and by the theorem
above, a2 ≡ 2 (mod 4), so a3 ≡ 4 ≡ 0 (mod 4). So for n ≥ 3, an ≡ 0 (mod
4), so all future terms of A010066 are multiples of four.

Nile’s Contribution to the OEIS The Pari code for A004207 and A010066
on the OEIS was impossible to understand so I added simpler code so that
people in the future can more easily access these sequences. Below are my
contributions to A004207 and A010066 respectively.
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(PARI) a = 1; print1(a, ", "); for(i = 1, 50, print1(a, ", ");

a = a + sumdigits(a)); \\ Nile Nepenthe Wynar, Feb 10 2018

(PARI) a = 1; print1(a, ", "); for(i = 1, 40, a = a + sumdigits(a, 5);

print1(a, ", ")); \\ Nile Nepenthe Wynar, Feb 10 2018

10


