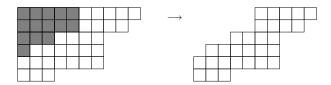
Washington Experimental Mathematics Lab Orbit Structure of Crystal Operators

Yujin Jeong, Junchen Pan Jake Levinson, Tuomas Tajakka


Department of Mathematics University of Washington

Spring 2018

Tableau

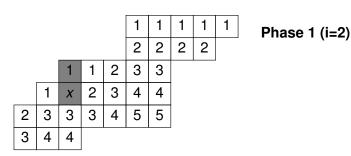
Skew Young Diagram

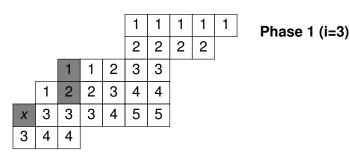
Start with a large shape : [10, 9, 7, 7, 7, 3] Remove the inner shape [5, 5, 3, 1]

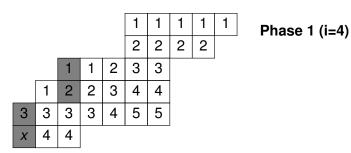
Tableau

Skew Semistandard Young Tableau

Skew Diagram
Filled with positive integers
Rows weakly increasing
Columns strictly increasing

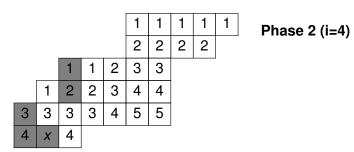

					1	1	1	1	1
					2	2	2	2	
			1	2	3	3			'
	1	1	2	3	4	4			
2	3	3	3	4	5	5			
3	4	4			•		•		

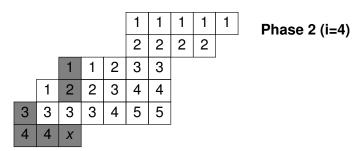


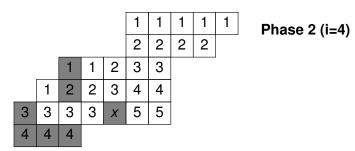

Algorithm on Young tableaux: 3 phases

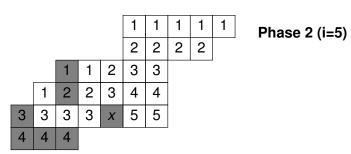
Phase 1: Generally the *x* moves **down and left**.

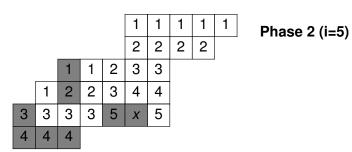
					1	1	1	1	1	Phase 1 (i=1)
					2	2	2	2		, , ,
		X	1	2	3	3		•		
	1	1	2	3	4	4				
2	3	3	3	4	5	5				
3	4	4					,			

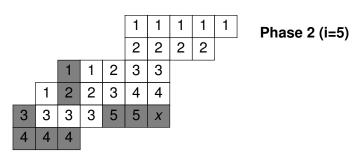


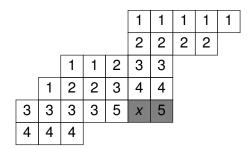


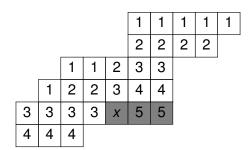

Algorithm on Young tableaux: 3 phases


Phase 2: Generally the *x* moves **up and right**.

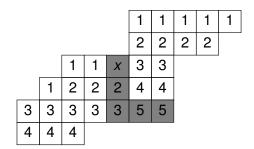

					1	1	1	1	1	Phase 2 (i=4)
					2	2	2	2		
		1	1	2	3	3			•	
	1	2	2	3	4	4				
3	3	3	3	4	5	5				
X	4	4								

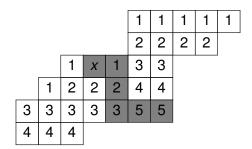


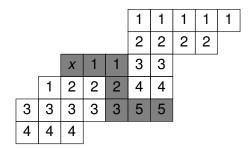


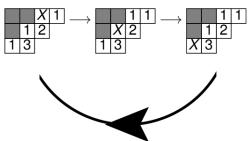


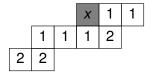

Algorithm on Young tableaux: 3 phases


Phase 3: Generally the *x* moves **up and left**.

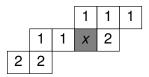

						1	1	1	1	1
						2	2	2	2	
			1	1	2	3	3			'
		1	2	2	3	4	4			
	3	3	3	3	5	5	X			
Ī	4	4	4					•		

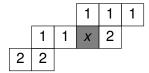


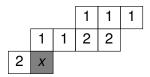



Recap

Orbit:


These three phases create a **new tableau**. After several iterations, we generate a complete orbit:


What is a Jump?


↓ no jumps

What is a Jump?

↓ one jump

Conjecture (from Geometry)

the total number of jumps in orbit \geq the length of orbit - 1

Question When does equality hold?

Focusing on tableaux containing only 1's and 2's

Let T_0 be **lexicographically** first tableau

 \rightarrow all 1's and x are located as high as possible

Hypothesis The following equality holds for T_0 's orbit

The total number of jumps = The number of tableaux - 1

Contraction

- A way to make small change to the tableau
- Start with an inner square, do "Inverse JDT" to slide the square to the outer edge of the tableau

How does orbit of T compare to orbit of T'?