Impartial Games

- 2 players with same rules
- Finite steps
- No random chance
- No secrets
- Whoever goes last wins
Example - Nim

- Most well-known impartial game
- Example

\[\begin{array}{ccccc}
 & & O & & \\
 & O & & & \\
 O & & & & \\
\end{array} \]
Example - Nim

- Most well-known impartial game
- Example

![Diagram of a Nim game setup]
Example - Nim

- Most well-known impartial game
- Example
Example - Nim

- Most well-known impartial game
- Example
Example - Nim

- Most well-known impartial game
- Example
Example - Nim

• Most well-known impartial game

Example

Grundy-Sprague theorem: every game with the qualities on the previous page is equivalent to some game of Nim.

• The **nimber** of a game tells you what it’s equivalent to.
Rook Placement Game

- Start with a board B, a finite collection of cells on a grid.
- Two players take turns placing rooks on B so that no two rooks *attack* each other.
- Whoever places the last rook wins.

Question: Given the board B, who wins? What’s the nimber?
Example game
Example game
Example game
Example game

Purple wins!
Rectangular boards are boring: If B is an $m \times n$ board with $m \leq n$, then player 1 wins if m is odd, and player 2 wins if m is even.

What if there are holes in the board?
Theorem

Let B be an $m \times n$ rectangular board with $m \leq n$, and let B' be a board obtained from B by removing at most $n - 2$ cells if m is even, and $n - 1$ cells if m is odd. Then B and B' will have the same winner.
Future Goals

Next steps
- Find all placements of the minimum number of holes to change the winner for rectangular boards.
- Staircase boards
- Other boards

Challenges
- Not obvious what a good move is
- Computational Complexity