Washington Experimental Mathematics Lab Stability Spectrum for PDEs

Faculty Mentor: Dr. Bernard Deconinck Graduate Mentor: Jeremy Upsal Team Members: Kush Gupta, Ryan Bushling

> Department of Mathematics University of Washington

> > Spring 2018

Stability Spectrum for PDEs

- Motivation To determine the stability of periodic solutions to certain PDEs, including the focusing mKdV equation
 - Problem To determine the eigenvalues of a linear operator such that the associated eigenfunctions are bounded
 - Methods Taking advantage of the periodicity of the coefficients using Floquet theory and Fourier series

Example

Let $\mathcal{L} = -\partial_{\nu}^2$ and consider the eigenvalue problem

$$\mathcal{L}y = \lambda y, \qquad \lambda \in \mathbb{C},$$

or equivalently, $v'' + \lambda v = 0$.

We say $\lambda \in \sigma(\mathcal{L})$ if the associated y(x) is bounded for all $x \in \mathbb{R}$, $\lim_{|x|\to\infty}|y(x)|<\infty.$

Example (ct'd.)

To find $\sigma(\mathcal{L})$, we solve the differential equation $y'' + \lambda y = 0$. The general solution is

$$y = c_1 e^{\sqrt{-\lambda}x} + c_2 e^{-\sqrt{-\lambda}x}.$$

In general, $\sqrt{-\lambda} \in \mathbb{C}$, so let $\sqrt{-\lambda} = \alpha + i\beta$ for some $\alpha, \beta \in \mathbb{R}$.

Example (ct'd.)

Letting
$$\sqrt{-\lambda} = \alpha + \mathrm{i}\beta$$
, rewrite $y = c_1 \mathrm{e}^{\sqrt{-\lambda}x} + c_2 \mathrm{e}^{-\sqrt{-\lambda}x}$ as
$$y = c_1 \mathrm{e}^{(\alpha + \mathrm{i}\beta)x} + c_2 \mathrm{e}^{-(\alpha + \mathrm{i}\beta)x}$$
$$= c_1 \mathrm{e}^{\alpha x} \mathrm{e}^{\mathrm{i}\beta x} + c_2 \mathrm{e}^{-\alpha x} \mathrm{e}^{-\mathrm{i}\beta x}$$
$$= c_1 \mathrm{e}^{\alpha x} [\cos(\beta x) + \mathrm{i}\sin(\beta x)] + c_2 \mathrm{e}^{-\alpha x} [\cos(\beta x) - \mathrm{i}\sin(\beta x)]$$

We require that the solution $\lim_{|x|\to\infty} |y(x)| < \infty$. Therefore, $\alpha = 0$.

Example (ct'd.)

With
$$\alpha = 0$$
,

$$y = c_1[\cos(\beta x) + i\sin(\beta x)] + c_2[\cos(\beta x) - i\sin(\beta x)]$$

= $A\cos(\beta x) + iB\sin(\beta x)$

is bounded for any $\beta \in \mathbb{R}$. $\sqrt{-\lambda} = i\beta$ only if $\lambda > 0$. So $\sigma(-\partial_{xx}) = [0, \infty)$.

Numerically computed spectrum

Figure: Spectrum of the operator $\mathcal{L} = -\partial_x^2$.

Pictures

Figure: Spectrum of the operator $\mathcal{L} = -\partial_x^2 + 2q\cos(2x)$ for q = 2 from 0 to 10.

Future goals

Next steps Determining the spectrum of

$$\mathcal{L} = -\partial_y^3 + (c - 6U^2)\partial_y + 12UU_y,$$

which is used in determining the stability of the solution u(x,t) = U(y) = U(x-ct) of the focusing mKdV equation:

$$u_t + 6u^2u_x + u_{xxx} = 0.$$

Challenges Understanding elliptic functions and generalizing our code.

