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Integer Points

Figure: Integer lattice within the circle x2 + y2 ≤ 10
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Primitive Points

Figure: Primitive points in the first quadrant of an integer lattice

"visible points," i.e. gcd(x , y) = 1
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Primitive Pairs

Definition
Let Count(R, k) denote the number of matrices

A = det
[
a b
c d

]
such that

a2 + b2 + c2 + d2 ≤ R2, ad − bc = k , a,b, c,d ∈ Z

gcd(a, c) = 1, gcd(b,d) = 1

Kimberly Bautista, Maddy Brown, Andrew Lim (University of Washington)Washington Experimental Mathematics Lab Spring 2018 4 / 15



Research

SL2(Z)

SL2(Z): set of 2× 2 matrices with determinant 1 and all integer entries

SL2(Z) =
{

A =

(
a b
c d

)
: det A = 1 and a,b, c,d ∈ Z

}
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SL2(Z) Orbits

Example:

SL2(Z) ·
(

1 1
0 3

)
=

{(
a b
c d

)(
1 1
0 3

)
=

(
a a + 3b
c c + 3d

)
: a,b, c,d ∈ Z,ad − bc = 1

}
SL2(Z) ·

(
1 2
0 3

)
=

{(
a b
c d

)(
1 2
0 3

)
=

(
a 2a + 3b
c 2c + 3d

)
: a,b, c,d ∈ Z,ad − bc = 1

}
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SL2(Z) Orbits Continued

SL2(Z) ·
(

1 1
0 3

)
=

{(
a a + 3b
c c + 3d

)
: ad − bc = 1

}
SL2(Z) ·

(
1 2
0 3

)
=

{(
a 2a + 3b
c 2c + 3d

)
: ad − bc = 1

}

The SL2(Z) orbit of
(

1 1
0 3

)
equals the SL2(Z) orbit of

(
1 2
0 3

)
if their

sets are equal:
2a + 3b = a + 3b ⇒ a = 0

2c + 3d = c + 3d ⇒ c = 0

Since a = c = 0, ad − bc = 0 which is a contradiction to our definition
that ad − bc = 1. Therefore, we showed they are not in the same orbit.
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SL2(Z) Orbits Continued

For a group of 2× 2 matrices with certain determinant k , we proved
that there are ϕ(k) SL2(Z) orbits, where ϕ(k) is Euler’s Totient function.

We did this by showing that any 2× 2 matrix can be reduced into the

form
(

1 j
0 k

)
, where k is the determinant of the original matrix and j is

an integer such that 0 < j ≤ k .

Note: gcd(j , k) = 1 hence, ϕ(k) distinct forms or orbits.
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How the Orbits Relate to Count

Count(R, k)
R2 → 6ϕ(k)

k
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Triples

Definition
Let Count(R, k1, k2, k3) denote the number of groups of 3 vectors

V1,V2,V3 ∈ Z2
prim

where each pair of vectors is inside a ball of radius R such that

det(V1,V2) = k1,

det(V1,V3) = k2,

and
det(V2,V3) = k3.
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Example of Orbits of Triples

Consider the matrix B =

(
1 1 k
0 1 1

)
, where k1 = 1, k2 = 1, k3 = 1− k

We want to classify our matrix B by applying any matrix
(

a b
c d

)
in

SL2(Z) to B. (
a b
c d

)(
1 1 k
0 1 1

)
=

(
a a + b ak + b
c c + d ck + d

)
Thus, we have classified the orbit of

(
1 1 k
0 1 1

)
to be all matrices of

the form
(

a a + b ak + b
c c + d ck + d

)
.
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Example of Orbits of Triples Continued

Consider the matrix
(

2 1 5
3 2 8

)
, where k1 = 1, k2 = 1, k3 = −2(

a b
c d

)(
1 1 k
0 1 1

)
=

(
2 1 5
3 2 8

)
⇒ a = 2,b = −1, c = 3,d = −1⇒ k = 3.

Thus, this matrix is in the orbit of
(

1 1 3
0 1 1

)

Kimberly Bautista, Maddy Brown, Andrew Lim (University of Washington)Washington Experimental Mathematics Lab Spring 2018 12 / 15



Research

Linear Independence

For a 2× 3 matrix A = [C1 | C2 | C3] where C1,C2,C3 ∈ R2, the
rank(A) ≤ 2.

This gives us the following cases for independence between the
vectors:

1 C1, C2, C3 are linearly dependent.
2 C1 and C2 are linearly independent.
3 C1 and C3 are linearly independent.
4 C2 and C3 are linearly independent.
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SL2(Z) Orbits of Triples

Consider matrix
(
V1 V2 V3

)
, where vectors Vj are "columns" in

Z2
prim. If there exists real numbers x and y such that V3 = xV1 + yV2,

then the SL2Z orbit of the matrix is{(
a b ax + by
c d cx + dy

)
:

(
a b
c d

)
∈ SL2Z ·

(
V1 V2

)}
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Future goals

Continue to understand the decomposition of primitive triples into
SL2Z orbits
Write a monster program that will count the density of any k -tuple
of vectors given any number of determinants as input
Write our beautiful paper with all the theory behind our findings
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