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1 Introduction

In this project we investigate a certain type of algebraic structure found in symmetric groups. Our work builds off of
the theory developed in the paper “Parabolic Double Cosets in Coxeter Groups” by Sara Billey, Matjaz̆ Konvalinka,
T. Kyle Petersen, William Slofstra, and Bridget Tenner [1]. We will provide a brief summary of this theory in the
following section for the purpose of defining terminology and recalling some useful results.

2 Background

We assume the reader is familiar with the symmetric group Sn. An adjacent transposition is a permutation that
swaps a single pair of adjacent numbers. We write si to denote the adjacent transposition that swaps (i↔ i+1). For
example, s3 = [12435] ∈ S5. A parabolic subgroup of Sn is one that is generated by adjacent transpositions. These
are denoted by WI := 〈si | i ∈ I〉 for I ⊆ {1, . . . , n − 1}. A parabolic double coset is a two-sided coset with respect
to two parabolic subgroups, WIwWJ := {pwq | p ∈WI , q ∈WJ}.

For our purposes it is useful to think of symmetric groups as being generated by adjacent transpositions, Sn =
〈si | i = 1, . . . , n − 1〉. In other words, any permutation can be written as a product of adjacent transpositions.
If w = si1 · · · sik , we say that si1 · · · sik is an expression for w. Moreover, if k is the smallest number of adjacent
transpositions needed to write w, then we say that si1 · · · sik is a reduced expression for w. This number, k, of
adjacent transpositions in a reduced expression for w is defined to be the length of w, and we denote it by `(w) = k.
In general, reduced expressions are not unique (not even up to reordering). For example, s3s4s3 = s4s3s4 are two
distinct reduced expressions for [12543] ∈ S5. We will make use of the following result from Corollary 1.4.8 in [2],
which is reproduced below without proof.

Proposition 1. Any expression w = si1 · · · sik contains a reduced expression for w as a subword, obtainable by
deleting an even number of letters.

There happens to be a useful partial order that one can put on Sn. For two permutations u, v ∈ Sn, we write u ≤ v
in Bruhat order if every reduced expression for v contains a subword that is a reduced expression for u. That is, if
v = si1 · · · sik is reduced, then there exists a reduced expression u = sia1

· · · siaj
for some 1 ≤ a1 ≤ · · · ≤ aj ≤ k. It

turns out that every parabolic double coset is an interval in Bruhat order. That is, every parabolic double coset is of
the form [u, v] = {w ∈ Sn : u ≤ w ≤ v}. This, in particular, implies that every parabolic double coset has a unique
element of maximal length and a unique element of minimal length.

We define left and right ascent and descent sets of a permutation w ∈ Sn as follows:

AscL(w) = {1 ≤ i ≤ n− 1 : `(siw) > `(w)}
DesL(w) = {1 ≤ i ≤ n− 1 : `(siw) < `(w)}
AscR(w) = {1 ≤ i ≤ n− 1 : `(wsi) > `(w)}
DesR(w) = {1 ≤ i ≤ n− 1 : `(wsi) < `(w)}.
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It can be shown that a permutation w is the minimal length element of the parabolic double coset WIwWJ if and only
if I ⊆ AscL(w) and J ⊆ AscR(w). The following is another result from [2] (Corollary 1.4.6) that we will eventually
use.

Proposition 2. For all i ∈ {1, . . . , n− 1} and w ∈ Sn, the following hold:

i) i ∈ DesL(w) if and only if some reduced expression for w begins with si.

ii) i ∈ DesR(w) if and only if some reduced expression for w ends with si.

Lastly, we reproduce Corollary 2.11 in [1], which is a useful criteria for determining whether an interval is a parabolic
double coset.

Proposition 3. The interval [u, v] is a parabolic double coset in Sn if and only if

u = minWAscL(u)∩DesL(v)vWAscR(u)∩DesR(v).

The underlying question that motivates our work is simple: How many parabolic double cosets are in Sn? This
question is answered in [1] in the (more general) context of finitely generated Coxeter groups. The presented
approach involves computing the number of parabolic double cosets in Sn whose minimal element is w, and then
summing this number over all permutations w ∈ Sn. One of the main reasons why this project exists is because the
authors believe there to be a more efficient way of counting parabolic double cosets. Our primary goal is to find
such a way. This quarter we explored the ideas of enumerating parabolic double cosets by their cardinality, rank
(difference in lengths of maximal and minimal elements), and isomorphism type (in Bruhat order).

3 Intervals of Rank
(
n
2

)
− 1

Lemma 1. Let G be a group with subgroups H and K, and let g ∈ G. If x ∈ HgK, then HgK = HxK.

Proof. Since x ∈ HgK we can write x = hgk for some h ∈ H and k ∈ K. Then HgK = H(hxk)K = (Hh)x(kK) =
HxK.

Lemma 2. Let n ≥ 3 and w0 ∈ Sn be the longest element. If w0 = si1si2 · · · sik and 1 < i < n− 1, then si appears
in si1si2 · · · sik more than once. That is, every expression for w0 contains more than one instance of si.

Proof. Fix 1 < i < n − 1 and consider the permutation ui = sisi−1si+1si ∈ Sn. We find through brute force
computation that sisi−1si+1si and sisi+1si−1si are the only reduced expressions for ui. Notice that both expressions
contain two instances of si. Then since ui ≤ w0, every reduced expression for w0 must contain two or more instances
of si. Since every expression contains a reduced expression as a subword, this proves the claim.

Lemma 3. Let C be a subset of Sn. Then C is a parabolic double coset if and only if its image under the map
w 7→ w0w is a parabolic double coset.

Proof. Since the map w 7→ w0w is an involution we only need to prove one direction. Suppose C ⊆ Sn is a parabolic
double coset. Then C = WIwWJ for some w ∈ Sn and I, J ⊆ {1, . . . , n− 1}. We will show that w0(WIwWJ) =
Ww0(I)w0wWJ . Indeed, if x ∈ w0(WIwWJ) then we can write x = w0(si1 · · · sia)w(sj1 · · · sjb) for some i1, . . . , ia ∈ I
and j1, . . . , jb ∈ J . Then

x = w0(si1 · · · sia)w(sj1 · · · sjb)

= (sn−i1 · · · sn−ia)w0w(sj1 · · · sjb)

= (sw0(i1) · · · sw0(ia))w0w(sj1 · · · sjb)

so x ∈ Ww0(I)w0wWJ . Conversely, if y ∈ Ww0(I)w0wWJ then y = (sw0(k1) · · · sw0(kc))w0w(sl1 · · · sld) for some
c, d ∈ N, k1, . . . , kc ∈ I, and l1, . . . , ld ∈ J . Then

y = (sw0(k1) · · · sw0(kc))w0w(sl1 · · · sld)

= w0(sn−w0(k1) · · · sn−w0(kc))w(sl1 · · · sld)

= w0(sk1
· · · skc

)w(sl1 · · · sld)

and therefore y ∈ w0(WIwWJ). We have shown Ww0(I)w0wWJ ⊆ w0(WIwWJ) and w0(WIwWJ) ⊆ Ww0(I)w0wWJ ,
hence the two sets are equal.
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Theorem 1. For n ≥ 3, there are exactly 4 parabolic double cosets in Sn of rank
(
n
2

)
− 1.

Proof. Let e ∈ Sn denote the identity. First note that any interval in Sn of rank
(
n
2

)
− 1 is of the form [si, w0] or

[e, w0si] for some adjacent transposition si, i ∈ {1, . . . , n− 1}. We will show that i = 1, n− 1 are the only choices of
i that correspond to parabolic double cosets. To see that the intervals [e, w0s1], [e, w0sn−1], [s1, w0], and [sn−1, w0]
are indeed parabolic double cosets, observe that

[s1, w0] = W{2,...,n−1}w0W{2,...,n−1}

[sn−1, w0] = W{1,...,n−2}w0W{1,...,n−2}

[e, w0s1] = W{1,...,n−2}eW{2,...,n−1}

[e, w0sn−1] = W{2,...,n−1}eW{1,...,n−2}.

Now fix i ∈ {2, . . . , n− 2} and consider the interval [si, w0]. Suppose for the sake of contradiction that this interval
is a parabolic double coset. Then there exist w ∈ Sn and I, J ⊆ {1, . . . , n − 1} such that si = minWIwWJ and
w0 = maxWIwWJ . In particular, si, w0 ∈WIwWJ and I ⊆ AscL(si) and J ⊆ AscR(si). By Lemma 1 we can write
WIwWJ = WIsiWJ . Then since w0 ∈WIsiWJ we have w0 = (si1 · · · sia)si(sj1 · · · sjb) for some a, b ∈ N, i1, . . . , ia ∈ I
and j1, . . . , jb ∈ J . Then Lemma 2 tells us that i ∈ {i1, . . . , ia, j1, . . . , jb}. But since s2

i = e and `(e) < `(si), we
know that i /∈ AscL(si) ∪AscR(si) and consequently i /∈ I ∪ J . This gives us a contradiction.

That [e, w0si] is not a parabolic double coset follows from Lemma 3 and the fact that the map w 7→ w0w is an
antiautomorphism of Bruhat order that sends [e, w0si] 7→ [si, w0].

4 Intervals of Rank
(
n
2

)
− 2

Lemma 4. For n ≥ 5, the intervals [s1sn−1, w0] and [e, w0s1sn−1] are not parabolic double cosets in Sn.

Proof. By Lemma 3 it is sufficient to show that [s1sn−1, w0] is not a parabolic double coset. Since n ≥ 5,
|1− (n− 1)| > 1 so that s1 and sn−1 commute and AscL(s1sn−1) ∩ DesL(w0) = AscR(s1sn−1) ∩ DesR(w0) =
{2, . . . , n − 2}. It is clear that minW{2,...,n−2}w0W{2,...,n−2} = t1,n = [n, 2, 3, . . . , n − 2, n − 1, 1] 6= s1sn−1, so by
Proposition 3, this implies that [s1sn−1, w0] is not a parabolic double coset.

Lemma 5. Let n ≥ 5. If |i− j| > 1 then [sisj , w0] and [e, w0sisj ] are not parabolic double cosets in Sn.

Proof. By Lemma 3 we only need to check [sisj , w0]. First note that si and sj commute so that DesL(sisj) =
DesR(sisj) = {i, j}. If both i, j ∈ {1, n − 1} then the result follows from the previous lemma, so we may as-
sume this is not the case. Suppose for contradiction that [sisj , w0] is a parabolic double coset. Then w0 =
(si1 · · · sia)sisj(sj1 · · · sjb) for some a, b ∈ N, i1, . . . , ia ∈ AscL(sisj), and j1, . . . , jb ∈ AscR(sisj). Then since
|i− j| > 1 and it is not the case that both i, j ∈ {1, n − 1}, we have that either 1 < i < n − 1 or 1 < j < n − 1.
Suppose without loss of generality that 1 < i < n− 1. By Lemma 2, we know that every expression for w0 contains
more than one instance of si, so i ∈ {i1, . . . , ia, j1, . . . , jb}. But this gives us a contradiction, since i ∈ DesL(sisj)
while {i1, . . . , ia, j1, . . . , jb} ⊆ AscL(sisj) = AscR(sisj).

Lemma 6. Let x, y ∈ Sn, I, J ⊆ {1, . . . , n − 1}, mx = minWIxWJ , and my = minWIyWJ . If x ≤ y, then
`(mx) ≤ `(my).

Proof. Consider the following procedure, which is a slight modification of the greedy algorithm outlined in Corollary
2.10 of [1] for finding the minimal element of a parabolic double coset. If I ∩DesL(y) 6= ∅, then there exists a reduced
expression y = sd · si1 · · · sia where d ∈ I ∩ DesL(y) (this follows from Proposition 2). Since x ≤ y, this reduced
expression for y contains a reduced expression for x as a subword. If this reduced expression for x begins with sd, we
multiply both x and y on the left by sd. Otherwise, we only multiply y on the left by sd. Let x′ and y′ denote the
resulting permutations. It is clear that in both cases we still have x′ ≤ y′. If J ∩ DesR(y) 6= ∅ we do the same but
on the right. Call the resulting permutations x′′ and y′′, and again notice that we still have x′′ ≤ y′′. We continue
this process until the algorithm terminates at my (we know from Corollary 2.10 in [1] that this algorithm does in

fact terminate, and that it ends at my). This leaves us with a permutation v = x
′′···′ ∈ WIxWJ such that v ≤ my.

It follows that `(mx) ≤ `(v) ≤ `(my) (since mx is the minimal element in WIxWJ and v ∈WIxWJ).
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Lemma 7. Let n ≥ 5 and i 6= j. If 2 < i < n− 2 or 2 < j < n− 2 then [sisj , w0] and [e, w0sisj ] are not parabolic
double cosets in Sn.

Proof. By Lemma 3 we only need to check [sisj , w0]. The case in which |i− j| > 1 is covered in Lemma 5, so we
may assume that either j = i+ 1 or i = j + 1.

Suppose first that j = i + 1. Consider the permutation vi = sisi+1si−1sisi+2si+1 ∈ Sn. One can verify through
computation that DesL(vi) = {i} and DesR(vi) = {i + 1}. It follows that if I = {1, . . . , n − 1} \ {i} and
J = {1, . . . , n − 1} \ {i + 1} then minWIviWJ = vi. Let m = minWIw0WJ . Then by Lemma 6, it must be
the case that `(m) ≥ `(vi) = 6. This, in particular, implies that m 6= sisi+1. Since I = AscL(sisi+1)∩DesL(w0) and
J = AscR(sisi+1) ∩DesR(w0), it follows from Proposition 3 that [sisi+1, w0] is not a parabolic double coset.

If i = j + 1 we instead consider v−1
j = sj+1sj+2sjsj−1sj+1sj ∈ Sn and proceed as in the previous case to reach the

same conclusion.

Lemma 8. Let n ≥ 6 and w0 ∈ Sn be the longest element. If w0 = si1si2 · · · sik and 2 < i < n− 2, then si appears
in si1si2 · · · sik more than twice. That is, every expression for w0 contains more than two instance of si.

Proof. Consider the permutation zi = sisi−1si+1sisi+2si+1si−2si−1si ∈ Sn. We find through computation that all
42 reduced expressions for zi contain 3 instances of si. Then since zi ≤ w0, we know that all reduced expressions
for w0 contain at least 3 instances of si. Since all expressions contain a reduced expression as a subword, this proves
the claim.

Lemma 9. Let n ≥ 5. If 1 < i < n− 1 or 1 < j < n− 1 then [si, w0sj ] is not a parabolic double coset in Sn.

Proof. Suppose for contradiction that 1 < i < n− 1 and [si, w0sj ] is a parabolic double coset. Note that DesL(si) =
DesR(si) = {i}. Then (si1 · · · sia)si(sj1 · · · sjb) = w0sj for some a, b ∈ N, i1, . . . , ia ∈ AscL(si), and j1, . . . , jb ∈
AscR(si). Multiplying on the right by sj this becomes (si1 · · · sia)si(sj1 · · · sjb)sj = w0. But since i ∈ DesL(si) ∩
DesR(si) we know that i /∈ {i1, . . . ia, j1, . . . , jb}. If i 6= j, this contradicts the fact that every expression for w0 con-
tains more than one instance of si (Lemma 2). If i = j 6= n

2 then we can use the fact that w0si = sn−iw0 to obtain
sn−i(si1 · · · sia)si(sj1 · · · sjb) = w0, which again contradicts Lemma 2 since n− i 6= i. If i = j = n

2 , then n is even and
we cannot use this approach (since w0 and sn/2 commute). We will show that in this case there is a contradiction
with lemma 8. Since n ≥ 6 (due to the fact that n is always even in this case), we have that 2 < n/2 < n − 2. It
then follows from Lemma 8 that every expression for w0 contains at least 3 instances of sn/2. But we still have that
sn/2(si1 · · · sia)sn/2(sj1 · · · sjb) = w0, which gives us our desired contradiction.

If i ∈ {1, n− 1} and 1 < j < n− 1 then we use the map w 7→ w0w to end up in the previous case.

Theorem 2. For n ≥ 5, there are exactly 12 parabolic double cosets in Sn of rank
(
n
2

)
− 2.

Proof. It is a straightforward computation to verify that

[s1s2, w0] = W{2,...,n−1}w0W{1,3,...,n−1} (1)

[s2s1, w0] = W{1,3,...,n−1}w0W{2,...,n−1} (2)

[sn−2sn−1, w0] = W{1,...,n−3,n−1}w0W{1,...,n−2} (3)

[sn−1sn−2, w0] = W{1,...,n−2}w0W{1,...,n−3,n−1} (4)

[e, w0s2s1] = W{1,...,n−3,n−1}eW{2,...,n−1} (5)

[e, w0s1s2] = W{1,...,n−2}eW{1,3,...,n−1} (6)

[e, s1s2w0] = W{2,...,n−1}eW{1,...,n−3,n−1} (7)

[e, s2s1w0] = W{1,3,...,n−1}eW{1,...,n−2} (8)

[s1, w0s1] = W{2,...,n−2}s1W{2,...,n−1} (9)

[s1, w0sn−1] = W{2,...,n−1}s1W{2,...,n−2} (10)

[sn−1, w0s1] = W{1,...,n−2}sn−1W{2,...,n−2} (11)

[sn−1, w0sn−1] = W{2,...,n−2}sn−1W{1,...,n−2}. (12)
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The previous 6 lemmas show that these are indeed the only parabolic double cosets of rank
(
n
2

)
− 2. This can be

seen by first noting that all intervals of rank
(
n
2

)
− 2 are of the form

[sisj , w0] (i 6= j) (13)

[e, w0sisj ] (i 6= j) (14)

[si, w0sj ]. (15)

Note that intervals of type (13) and type (14) correspond under the map w 7→ w0w, so by Lemma 3 it is sufficient
to only consider intervals of types (13) and (15). In Lemma 9 we showed that intervals of type (15) can only be
parabolic double cosets if both i, j ∈ {1, n− 1}. It turns out that all four choices of (i, j) are indeed parabolic double
cosets, as seen above in (9) - (12).

Next, we want to show that parabolic double cosets of type (13) necessarily have either both i, j ∈ {1, 2} or i, j ∈ {n−
1, n−2}. Lemma 5 shows that we cannot have |i− j| > 1, and Lemma 7 shows that that both i, j ∈ {1, 2, n−1, n−2}.
Together with the assumption that n ≥ 5, these give the desired result. It is shown above in (1) - (4) that all intervals
of type (13) satisfying this condition are indeed parabolic double cosets. Lastly, (5) - (8) are just the images of (1) -
(4) under the map w 7→ w0w.

The following results prove a slightly more general version of Lemma 7.

Lemma 10. Let w ∈ Sn and I, J ⊆ {1, . . . , n− 1}. If I ′ ⊆ I and J ′ ⊆ J then `(minWIwWJ) ≤ `(minWI′wWJ′).

Proof. This follows immediately from the fact that WI′wWJ′ ⊆WIwWJ by definition.

Lemma 11. Let n ≥ 5, 1 < i < n− 2, and I, J ⊆ {1, . . . , n− 1}. If i /∈ I and i+ 1 /∈ J then `(minWIw0WJ) ≥ 6.

Proof. We saw in the proof of Lemma 7 that `(minW{1,...,n−1}\{i}w0W{1,...,n−1}\{i+1}) ≥ 6, so if I ⊆ {1, . . . , n−1}\
{i} and J ⊆ {1, . . . , n− 1} \ {i+ 1} then we have by Lemma 10 that

`(minWIw0WJ) ≥ `(minW{1,...,n−1}\{i}w0W{1,...,n−1}\{i+1}) ≥ 6.

Lemma 12. Let n ≥ 5 and 1 < i < n − 2. If u, v ∈ Sn such that i ∈ DesL(u), i + 1 ∈ DesR(u), `(u) ≤ 5, and
v ≥ sisi+1si−1sisi+2si+1, then [u, v] is not a parabolic double coset in Sn.

Proof. Let u, v ∈ Sn be such permutations. Then

`(minWAscL(u)∩DesL(v)vWAscR(u)∩DesR(v)) ≥ `(minWAscL(u)w0WAscR(u)) ≥ 6

by Lemmas 6, 10, and 11. Since `(u) ≤ 5 by assumption, this means u 6= minWAscL(u)∩DesL(v)vWAscR(u)∩DesR(v) and
consequently [u, v] is not a parabolic double coset by Proposition 3.

5 Parabolic Representations

Let C = WIwWJ be a parabolic double coset in Sn. Then Cw−1 = WI(wWJw
−1) can be viewed as a collection of

permutations of the values {1, . . . , n}. Let V denote the subset of the values {1, . . . , n} that are not fixed by Cw−1.
Let HL denote the subgroup of SV given by restricting WI to V and let HR denote the subgroup of SV given by
restricting wWjw

−1 to V . Let AL ⊆ V × V denote the collection of pairs (v1, v2) of values such that the values v1

and v2 are adjacent in {1, . . . , n}. Let AR ⊆ V × V denote the collection of pairs (v1, v2) of values such that the
positions w−1v1 and w−1v2 are adjacent in {1, . . . , n}. The set I corresponds to the subset TL ⊆ AL of pairs (v1, v2)
of values such that the transposition swapping the values v1 and v2 lies in I. The set J corresponds to the subset
TR ⊆ AR of pairs (v1, v2) of values such that the transposition swapping the positions w−1v1 and w−1v2 lies in J .
The tuple Φ = (V,AL, AR, TL, TR) is an example of a parabolic representation that encodes C at w.

Definition 1. A parabolic representation consists of a finite collection V of letters, left adjacency relations AL ⊆
V × V , right adjacency relations AR ⊆ V × V , left transpositions TL ⊆ AL, and right transpositions TR ⊆ AR such
that the graphs (V,AL) and (V,AR) are linear forests (disjoint unions of paths) and such that every element of V is
contained in some element of TL ∪ TR.
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Definition 2. If Φ = (V,AL, AR, TL, TR) is a parabolic representation, HL the group of permutations of V generated
by the left transpositions TL, and HR the group of permutations of V generated by the right transpositions TR, then
we define ΠΦ = HLHR.

Lemma 13. If Φ = (V,AL, AR, TL, TR) and Ψ = (V,AL, AR, UL, UR) are parabolic representations with ΠΦ = ΠΨ

then Φ ∪Ψ = (V,AL, AR, TL ∪ UL, TR ∪ UR) is a parabolic representation with ΠΦ∪Ψ = ΠΦ = ΠΨ.

Proof. It is clear from the definitions that Φ∪Ψ is a parabolic representation with ΠΦ = ΠΨ ⊆ ΠΦ∪Ψ. Note that ΠΦ

is closed under left-multiplication by transpositions in TL and ΠΨ is closed under left-multiplication by transpositions
in UL so ΠΦ = ΠΨ is closed under left-multiplication by transpositions in TL ∪ UL. Similarly, ΠΦ = ΠΨ is closed
under right-multiplication by transpositions in TR ∪ UR. However, ΠΦ∪Ψ is the smallest collection of permutations
of V containing the identity and closed under left-multiplication by TL ∪ UL and closed under right-multiplication
by TR ∪ UR. This shows that ΠΦ∪Ψ ⊆ ΠΦ = ΠΨ.

Definition 3. If Φ = (V,AL, AR, TL, TR) is a parabolic representation then we define Φ to be the maximal parabolic
representation Ψ = (V,AL, AR, UL, UR) with ΠΦ = ΠΨ. We say that Φ is maximal when Φ = Φ.

Definition 4. If Φ = (V,AL, AR, TL, TR) and Ψ = (W,BL, BR, UL, UR) are parabolic representations then an
isomorphism between Φ and Ψ is a bijective function V → W such that the product map V × V → W ×W takes
AL to BL, AR to BR, TL to UL, and TR to UR.

If ϕ : V → {1, . . . , n} is injective then we can define the injective homomorphism ϕ̃ : SV → Sn by

ϕ̃(π)(k) =

{
(ϕ ◦ π ◦ ϕ−1)(k) k ∈ ϕ[V ]

k k 6∈ ϕ[V ]
.

Definition 5. If Φ = (V,AL, AR, TL, TR) is a parabolic representation and if C is a parabolic double coset of Sn

and if w is an element of C then an encoding of C at w by Φ consists of injective functions ϕL : V → {1, . . . , n} and
ϕR : V → {1, . . . , n} such that

1. ϕL(u) is adjacent to ϕL(v) if and only if (u, v) ∈ AL for all u, v ∈ V .

2. ϕR(u) is adjacent to ϕR(v) if and only if (u, v) ∈ AR for all u, v ∈ V .

3. w(ϕR(v)) = ϕL(v) for all v ∈ V .

4. ϕ̃L[ΠΦ] = Cw−1.

Definition 6. Let C be a parabolic double coset of Sn and let w be an element of C. An isomorphism between
encodings (Φ, ϕL, ϕR) and (Ψ, ψL, ψR) of C at w consists of an isomorphism f between Φ and Ψ such that ψL◦f = ϕL

and ψR ◦ f = ϕR.

Lemma 14. Let C be a parabolic double coset of Sn and let w be an element of C. Let V denote the collection of
values in {1, . . . , n} acted on by Cw−1. Let AL ⊆ V × V denote the collection of pairs (v1, v2) of values such that
the values v1 and v2 are adjacent in {1, . . . , n}. Let AR ⊆ V ×V denote the collection of pairs (v1, v2) of values such
that the positions w−1v1 and w−1v2 are adjacent in {1, . . . , n}. Let ϕL : V → {1, . . . , n} be the inclusion map and
let ϕR : V → {1, . . . , n} be given by ϕR(v) = g−1(v).
Then every encoding of C at w is isomorphic to a unique encoding of C at w of the form

((Φ, AL, AR, TL, TR), ϕL, ϕR)

for some TL ⊆ AL and TR ⊆ AR. Call a choice of (TL, TR) valid if ((V,AL, AR, TL, TR), ϕL, ϕR) is an encoding of
C at w. We may partially order valid choices of (TL, TR) by inclusion. Call a choice of (I, J) valid if C = WIwWJ .
We may partially order valid choices of (I, J) by inclusion. Then ϕL induces a poset isomorphism between valid
choices of (TL, TR) and valid choices of (I, J).
In particular, there is a unique maximal parabolic representation that encodes C at w, up to isomorphism.
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Proof. Let ((W,BL, BR, UL, UR), ψL, ψR) be an encoding of C at w. If f : W → V induces an isomorphism between
((W,BL, BR, UL, UR), ψL, ψR) and ((V,AL, AR, TL, TR), φL, φR) then φL◦f = ψL so f is given by ψL. This shows the
uniqueness part of the first statement. For the existence part of the first statement, the bijection ψL : W → ψL[W ]
induces an isomorphism on ((W,BL, BR, UL, UR), ψL, ψR). Then to prove the existence part of the first statement,
we may assume without loss of generality that W ⊆ {1, . . . , n} and that ψL is the inclusion map. We now show that
the definitions of a parabolic representation will force W = V , BL = AL, BR = AR, ψL = ϕL, and ψR = ϕR. First
note that W is the collection of letters acted on by ΠΦ. By condition 4 of definition 5, this is also the collection of
letters acted on by Cw−1. This shows that W = V . Also, condition 2 of definition 5 states that w(ψR(v)) = v for
all v ∈ V or, equivalently, that ψR(v) = w−1(v) for all v ∈ V . This shows that ψR = ϕR. Then conditions 1 and 2
of definition 5 become

1. u is adjacent to v if and only if (u, v) ∈ BL for all u, v ∈ V .

2. w−1(u) is adjacent to w−1(v) if and only if (u, v) ∈ BR for all u, v ∈ V .

Then BL = AL and BR = AR which completes the proof of the existence part of the first statement.
Note that a choice of (TL, TR) is valid if and only if ϕ̃L[HLHR] = Cw−1 and note that a choice of (I, J) is valid
if and only if C = WIwWJ if and only if WI(wWJw

−1) = Cw−1. However, if ϕL takes (TL, TR) to (I, J) then
ϕ̃L[HL] = WI and ϕ̃L[HR] = wWJw

−1. This shows the second statement. Lemma 13 and definition 3 show that the
poset of valid choices of (TL, TR) has a maximal element. As a consequence, the poset of valid choices of (I, J) also
has a maximal element (the maximal presentation).

Lemma 15. Let Φ = (V,AL, AR, TL, TR) be a parabolic representation. Let cΦ(n) count the number of pairs (C,w)
consisting of a parabolic double coset C in Sn and an element w of C such that Φ encodes C at w. Then cΦ(n) is
given by

cΦ(n) =
1

Aut(V,AL, AR, TL, TR)
2pL+pR−sL−sR(n− |V |)! (n− |V |+ 1)!

(n− |V | − pL + 1)!

(n− |V |+ 1)!

(n− |V | − pR + 1)!

where pj denotes the number of connected components of Aj for j ∈ {L,R} and where sR denotes the number of
isolated vertices of Aj for j ∈ {L,R}. Alternatively, if Aj is thought of as a inducing a partition of S for j ∈ {L,R}
then pj denotes the number of parts of Aj for j ∈ {L,R} and sj denotes the number of parts of cardinality 1 for
j ∈ {L,R}.

Proof. Let j ∈ {L,R} and let Aj have connected components of orders a1, a2, . . . , apj . The ways to embed distin-
guishable chains of lengths a1, a2, . . . , apj into {1, . . . , n} such that distinct chains are not adjacent are in bijection
with ways to place pj distinguished balls into n−|V |+ 1 boxes. Then the number of embeddings ϕj : S → {1, . . . , n}
that preserve adjacency is given by 2pj−sj (n − |V | + 1)!/(n − |V | − pj + 1)! where pj − sj is the number of con-
nected componenets of Aj of cardinality at least 2 where the orientation of the embedding matters. We multiply
this quantity for j = L and j = R and then divide by Aut(V,AL, AR, TL, TR) as applying an automorphism of
(V,AL, AR, TL, TR) would give an identical embedding. Conversely, if some embedding is overcounted then lemma
14 gives that the overcounting is given by applying an automorphism of (V,AL, AR, TL, TR). Finally, the number of
w which satisfy condition 3 of definition 5 is given by (n− |V |)! since we specify the values of w at |V | positions.

Theorem 3. Let k be a natural number. Let ck(n) count the number of parabolic double cosets in Sn of cardinality
k. Then ck(n) is given by a polynomial times a factorial.

Proof. Note that kck(n) counts the number of pairs (C,w) consisting of a parabolic double coset of Sn of cardinality k
and an element w of C. Lemma 14 gives that any such pair is encoded by a unique maximal parabolic representation
up to isomorphism. Then kck(n) is given by summing cΦ(n) over all isomorphism classes of maximal parabolic
representations Φ with |ΠΦ| = k. Lemma 15 gives that this sum is a polynomial times a factorial.

6 Applications

Lemma 16. Let WI be a parabolic subgroup of Sn. If p is a prime and if pk
∣∣ |W | then p!k ∣∣ |W |.
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Proof. Note that |W | is a product of factorials so it suffices to show that if pk
∣∣ m! then p!k

∣∣ m!. By de Polignac’s
formula for the power of a prime dividing a factorial, we may take

k =

⌊
m

p

⌋
+

⌊
m

p2

⌋
+

⌊
m

p3

⌋
+ . . . .

However, there is a subgroup of Sm of order p!k. First group some of the m letters into bm/pc blocks of size p and
allow for arbitrary permutations within each block. The resulting group has order pbm/pc. Then group some of the
bm/pc blocks of size p into

⌊
m/p2

⌋
“mega-blocks” (consisting of p blocks each) and allow for arbitrary permutations

of the p blocks within each “mega-block”. The resulting group has order pbm/pc+bm/p2c. Repeating this construction
gives the desired subgroup.

Lemma 17. Let C = WIwWJ be a parabolic double coset in Sn. Then

|WI |
∣∣ |C|, |WJ |

∣∣ |C|, |C|
∣∣ |WI ||WJ |.

If p is a prime and if p
∣∣ |C| then p! ∣∣ |C|. More generally, if p2k−1

∣∣ |C| then p!k ∣∣ |C|.
Proof. For the first statement, note that C is a disjoint union of right cosets of C. For the second statement, note
that C is a disjoint union of left cosets of C. For the third statement, note that WI ×WJ acts transitively on C and
apply the orbit-stabilizer theorem. Then the final statement follows from the previous lemma.

Lemma 18. Let Φ = (V,AL, AR, TL, TR) be a maximal parabolic representation with |V | = n. Then

2dn/2e ≤ |ΠΦ| ≤ n!.

Moreover, if |ΠΦ| = n! then ΠΦ = SV and TL = AR and TR = AR.

Proof. Note that ΠΦ ⊆ SV so |ΠΦ| ≤ |SV | = n!. If |ΠΦ| = n! then ΠΦ = S. Moreover, if |ΠΦ| = n! then
Ψ = (V,AL, AR, AL, AR) is a parabolic reperesentation with SV = ΠΦ ⊆ ΠΨ ⊆ SV so ΠΦ = ΠΨ. Then the maxi-
mality of Φ gives that Φ = Ψ so TL = AL and TR = AR.

For the other inequality, we may assume that Φ is chosen such that |ΠΦ| is minimal and then that the number of
edges of TL plus the number of edges of TR is minimal. If TL ∪ TR contains a path or cycle of three edges then
removing the middle edge (or any edge, in the case of a cycle) gives a contradiction. Then the graphs (V, TL) and
(V, TR) are disjoint unions of paths of at most two edges. Suppose that v1 ∼ v2 ∼ v3 is a path of two edges in (V, TL).
If v2 is not isolated in (V, TR) then replacing v1 ∼ v2 ∼ v3 by v1 ∼ v3 in (V, TL) gives a contradiction. Otherwise,
all of v1, v2, and v3 are isolated in (V, TR) so replacing v1 ∼ v2 ∼ v3 by v1 ∼ v2 in (V, TL) and adding the edge
v2 ∼ v3 in (V, TR) gives a contradiction. Thus, (V, TL) is a disjoint union of paths of at most one edge. Similarly,
we have that (V, TR) is a disjoint union of paths of at most one edge. Now if v1 ∼ v2 in (V, TL) and if v1 ∼ v2 in
(V, TR) then deleting v1 ∼ v2 in (V, TR) gives a contradiction. Also, if v1 ∼ v2 and v4 ∼ v5 in (V, TL) and if v2 ∼ v3

and v5 ∼ v6 in (V, TR) then replacing v4 ∼ v5 by v3 ∼ v4 and v5 ∼ v6 in (V, TL) and deleting v2 ∼ v3 and v5 ∼ v6

in (V, TR) gives a contradiction. Thus, each element of v is contained in an edge of TL or of TR, edges of TL do not
overlap, edges of TR do not overlap, and there is at most occurrence of an edge of TL overlapping an edge of TR.
Then |ΠΦ| = 2dn/2e.

A table of the bounds of lemma 18 is provided in table 1 below.

n 2dn/2e n!
0 1 1
1 2 1
2 2 2
3 4 6
4 4 24
5 8 120
6 8 720
7 16 5040
8 16 40320
9 32 362880
10 32 3628800
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Table 1: Values of the bounds of lemma 18.

Lemma 17 constrains the cardinality k of a parabolic double coset. Once k has been selected, the general procedure
for obtaining the formula for the number of parabolic double cosets of cardinality k is as follows:

1. Use the inequalities of lemma 18 to constrain the possible values of |V | for a maximal parabolic representation
Φ = (V,AL, AR, TL, TR) with |ΠΦ| = k.

2. Determine all maximal parabolic representations Φ = (V,AL, AR, TL, TR) with |ΠΦ| = k.

3. Apply lemma 15 to each Φ, sum up the resulting formulas, and divide by k.

For step 2, the recommended approach is to first choose the value of |V | (in the range given by step 1) and to then
choose TL and TR such that |ΠΦ| = k and such that (V, TL) and (V, TR) are linear forests and such that every element
of V is contained in some element of TL ∪ TR. Once TL and TR have been chosen, let ML and MR be the collections
of edges e such that ΠΦ is not closed under left or right multiplication by e (respectively). Then the valid choices of
AL and AR are precisely those such that TL ⊆ AL ⊆ TL ∪ML and TR ⊆ AR ⊆ TR ∪MR and such that (V,AL) and
(V, TR) are linear forests.

One has to take care to ensure that the resulting maximal parabolic representations are not isomorphic.

7 Examples

We now give examples of determining the formula for the number of parabolic double cosets of cardinalities k = 2, 4, 6.
Note that there are no nontrivial parabolic double cosets of odd order by lemma 17.

7.1 k = 2

If k = 2 then Table 1 gives that |V | = 2. Also, lemma 18 gives that AL = TL and AR = TR. If we write V = {a, b}
then there are three possibilities:

1. AL = TL = {〈a, b〉}, AR = TR = ∅.

2. AL = TL = ∅, AR = TR = {〈a, b〉}.

3. AL = TL = {〈a, b〉}, AR = TR = {〈a, b〉}.
In each case, |Aut(V,AL, AR, TL, TR)| = 2. Also, cases 1 and 2 are symmetric. Then the general formula is

c2(n) =
(n− 2)!

4

(
2 · 21(n− 1)2(n− 2) + 22(n− 1)2

)
= (n− 1)!(n− 1)2.

7.2 k = 4, the |V | = 3 case

If k = 4 then Table 1 gives that |V | = 3, 4. We only consider the case where |V | = 3. If we write V = {a, b, c} then the
only possibility for TL and TR (up to isomorphism) is TL = {〈a, b〉} and TR = {〈b, c〉}. Note that |Aut(V, TL, TR)| = 1
so |Aut(V,AL, AR, TL, TR)| = 1. Then the contribution from the |V | = 3 case is

(n− 3)!

4

∑
AL⊇TL a

linear forest

∑
AR⊇TR a

linear forest

2pL+pR−sL−sR (n− 2)!

(n− pL − 2)!

(n− 2)!

(n− pR − 2)!

= (n− 3)!

 ∑
AL⊇TL a

linear forest

(n− 2)!

(n− pL − 2)!


2

= (n− 3)! ((n− 2)(n− 3) + 2 · (n− 2))
2

= (n− 1)!(n− 1)(n− 2).

Note that this formula gives the correct result for n = 3 since the |V | = 4 case will not contribute anything when
n = 3 (there are no injections from a set of size 4 to a set of size 3 so no ϕL exists).
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7.3 k = 6

If k = 6 then table 1 gives that |V | = 3, 4. However, lemma 17 gives that |ΠΦ|
∣∣ |HL||HR|. Then 3

∣∣ |Hj | for some
j ∈ {L,R}. Then Tj contains two adjacent edges 〈a, b〉 and 〈b, c〉 and ΠΦ = S{a,b,c}. This shows that |V | = 3.
Then lemma 18 gives that AL = TL and AR = TR. If we write V = {a, b, c} then there are five possibilities (up to
isomorphism):

1. AL = TL = {〈a, b〉, 〈b, c〉}, AR = TR = ∅.

2. AL = TL = {〈a, b〉, 〈b, c〉}, AR = TR = {〈a, b〉}.

3. AL = TL = {〈a, b〉, 〈b, c〉}, AR = TR = {〈a, c〉}.

4. AL = TL = {〈a, b〉, 〈b, c〉}, AR = TR = {〈a, b〉, 〈a, c〉}.

5. AL = TL = {〈a, b〉, 〈b, c〉}, AR = TR = {〈a, b〉, 〈b, c〉}.

6. AL = TL = {〈a, b〉}, AR = TR = {〈a, b〉, 〈a, c〉}.

7. AL = TL = {〈a, b〉}, AR = TR = {〈a, b〉, 〈b, c〉}.

8. AL = TL = ∅, AR = TR = {〈a, b〉, 〈b, c〉}.

By symmetry, the contribution from cases 6, 7, and 8 will be the same as the contribution from cases 1, 2, and 3.
Then it suffices to consider cases 1, 2, 3, 4, and 5. In cases 1, 3, and 5, we have that |Aut(V,AL, AR, TL, TR)| = 2
but in cases 2 and 4, we have that |Aut(V,AL, AR, TL, TR)| = 1. Then the general formula is

c6(n) =
(n− 3)!

6
(n− 2)2

(
2

(
21

2
(n− 3)(n− 4) +

22

1
(n− 3) +

22

2
(n− 3)

)
+

22

1
+

22

2

)
=

(n− 2)!(n− 2)

3
((n− 3)(n− 4) + 4(n− 3) + 2(n− 3) + 3)

= (n− 2)!(n− 2)(n2 − n− 3)/3.

8 Code

One of our goals at the beginning of this project was to implement the main formula in [1] for computing the number
of parabolic double cosets in Sn. Over the past two quarters we have written some code which can be found at
https://github.com/jir682/PDC. This has not only solidified our understanding of the theory, but has also allowed
us collect data which has led to conjectures and theoretical results. Among other things, this code can:

• Compute the number of parabolic double cosets in Sn

• Find the minimal and maximal elements of a parabolic double coset

• Compute the lex-maximal presentation of a parabolic double coset (in interval form)

• Determine whether two permutations are related in Bruhat order

• Determine whether a Bruhat interval is a parabolic double coset

• Compute the rank and cardinality of a parabolic double coset

• Find all reduced expressions for a permutation

• Draw w-oceans
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9 Future Goals

There is still much work to be done on counting parabolic double cosets by their rank and cardinality. We would
like to eventually prove or disprove the following conjecture: For a fixed natural number k, the number of parabolic
double cosets in Sn of rank

(
n
2

)
− k is eventually constant as a function of n. In the future we also hope to explore

other methods of enumeration, possibly based on minimal and maximal elements (since these are easy to compute).
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