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Abstract
Motivated by the fact that the nerve of a simplicial complex is easier

and simpler to work with but also shares some of the properties of the
original simplicial complex, we explored many things about the nerve in
this quarter, including the computations of the nerve, power of nerve, and
higher nerves; proof of the existence of higher cycles of nerve; and the
difference between nerve and higher nerve.

1 Introduction
We will review some definitions which are vital to our research.

A simplex is a generalization of the triangle, but for any arbitrary dimen-
sion. You are already familiar with the 2-simplex (triangle) and the 3-simplex
(tetrahedron).

Figure 1: Simplices

A graph is a set of vertices and edges. It is helpful to think of graphs as
instead sets of 0-simplices and 1-simplices. Simple graphs (i.e., those without
loops or multiple edges) may be uniquely characterized as a collection of sets of
integers. For instance, Figure 2(a) can be characterized as

∆ = {{1}, {2}, {3}, {4}, {5}, {6}, {1, 2}, {1, 5}, {2, 5}, {2, 3}, {3, 4}, {4, 5}, {4, 6}}.
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(a) A graph
(b) A simplicial complex

Figure 2: Examples of simplicial complexes

A simplicial complex is a generalization of a graph, as it allows higher
dimensional simplicies rather than just 0- and 1-simplices. Simplicial complexes
can also be characterized as a collection of sets of integers. For instance, a trian-
gle with vertices {1}, {2}, {3} can be represented as ∆ = {{1}, {2}, {3}, {1, 2},
{1, 3}, {2, 3}, {1, 2, 3}}. We call a single set of integers a face of the simplicial
complex. In Figure 2(b), {2, 3, 4, 5} and {2, 3, 5} are examples of faces.

A facet is a face that is not contained in any other face. For example, in
Figure 2(b), {1, 2, 3, 4}, {3, 5}, and {5, 6, 7} are facets while {2, 3, 4} and {1, 7}
are not.

A simplicial complex can more conveniently be uniquely characterized as a
set of facets. For example, Figure 2(b) can be characterized as

∆ = 〈{2, 3, 4, 5}, {1, 4, 6, 7}, {1, 5}, {1, 8}, {5, 8, 9}〉,

where we just list the sets representing the facets. Rigorously, a simplicial
complex is a collection of sets of integers ∆ where for any face σ ∈ ∆ with
τ ⊆ σ, it follows τ ∈ ∆.

An operation we can perform on simplicial complexes that we were particu-
larly interested in this quarter was taking the nerve. If we have the set of Fi’s
representing the facets of ∆, then the nerve of ∆ is the following:

N(∆) = {{Fi} :
∣∣∣⋂Fi

∣∣∣ 6= ∅}.
That is, the nerve is the collection of sets of facets which intersect at at least
one point. In general, the nerve of a simplicial complex is simpler and easier to
work with than the original collection of sets. However, it shares many of the
same properties.

We can construct the nerve of a simplicial complex more or less by looking
at the its graphical representation. When drawing the nerve, we draw a vertex
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for each of the facets in the original complex. Then, we draw lines (or create
filled-in triangles or tetrahedron, etc.) between the vertices representing the
facets which are connected. This process is displayed in Figure 3.

Figure 3: ∆ and N(∆)

2 Past Results
This section details some already known properties of simplicial complexes and
nerves which interest us and inspired some of our conjectures.

Betti Numbers: Informally, the kth Betti number counts the number of
k-dimensional holes on a topological surface.

• β0 is the number of connected components.
• β1 is the number of one-dimensional “circular” holes.
• β2 is the number of two-dimensional “cavities.”

When we take the nerve of a simplicial complex, all of the Betti number values
are preserved, due to a well-known theorem of Borsuk.

Theorem 1 (Borsuk’s Nerve Theorem, [2]) The complexes ∆ and N(∆) are
homotopy equivalent. In particular, they have the same Betti numbers.

A more recent development is the following, due to Barmak and Minian.

Theorem 2 [1] For a simplicial complex ∆, if there exists some k ∈ N where
Nk(∆) = 〈1〉, then ∆ is collapsible. If ∆ is collapsible, then its Betti numbers
are all zero.

We will not give precise definitions for homotopy equivalence and collapsibil-
ity here; they can found in most algebraic topology textbooks (see, for example,
Hatcher’s Algebraic Topology). We will define Nk(∆) in the next section.
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3 Our Research
Over the course of this quarter, we spent most of our time exploring two ideas
related to nerves: powers of nerves and higher nerves. In the former, we take the
nerve of a complex several times. In the latter, we take the nerve of complexes
in a slightly modified way that reveals different information about the original
complex.

3.1 Powers of Nerves
We call applying the nerve transformation several times as taking the “power”
of the nerve. Taking the nerve of a simplicial complex ∆ twice can be written
as

N(N(∆)) = N2(∆).

Taking the nerve of ∆ k times is subsequently written as

Nk(∆) = N(Nk−1(∆)).

We refer to the above as the “k-th power” of the nerve of ∆.
We used our Python code (detailed in the appendix) to take nerve powers

of randomly-generated simplicial complexes. We noticed this resulted in two
behaviors. Some complexes, such as Figure 4, will converge to a particular
complex. Continuing to take the nerve again will result in the same complex,
or Nk(∆) = Nk−1(∆). Other complexes, like Figure 5, will eventually toggle
between two complexes, or Nk(∆) = Nk−2(∆) 6= Nk−1(∆).

Figure 4: ∆, N(∆), and N2(∆) for a simplicial complex ∆ which converges to
one complex.

We wondered if there were any complexes that converged to a cycle of three
or more complexes. After running many randomly-generated complexes, our
experimental evidence suggested there were not any complexes that entered a
3-cycle or higher. We have an outline for a possible proof in the works.

3.2 Higher Nerves
Something else we spent a lot of time thinking about was the concept of “higher
nerves.” When we take higher nerves of complexes, instead of looking for any
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Figure 5: ∆, N(∆), andN2(∆) for a simplicial complex ∆ which toggles between
two complexes after taking the nerve several times.

intersection between facets, we look for at least k intersections between facets.
This reveals different information about the original complex than we get by
just taking the nerve.

The “k-th nerve” of a simplicial complex is formally defined by the following:

Nk(∆) = {{Fi} :
∣∣∣⋂Fi

∣∣∣ ≥ k}.

Figure 6: Two simplicial complexes with identical first nerves but differing sec-
ond nerves.

Unlike the original nerve, higher nerves do not preserve holes or Betti num-
bers. We conjectured that taking the higher nerve repeatedly of any simplicial
complex will eventually result in the empty set. One reason this makes sense
is because the Betti numbers (number of holes) are not preserved, so nothing
has to “stay” in the complex when we take its higher nerve. We do not have a
proof for this conjecture yet, but we have strong experimental evidence that it
is true.
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4 Conclusion
We explored simplicial complexes and what it means to take their nerve. We
have created multiple conjectures regarding the repeated computation of nerves.
Future goals of this project would be to revise our proof on the non-existence of
n-cycles for powers of nerves and to show that our conjecture about powers of
higher nerves is true, or if its not, to observe something about complexes which
have higher nerves that do not go to the empty set.

5 Appendix
Below is Python code we wrote to manipulate simplicial complexes, and compute
nerves, the power of nerves, and higher nerves in an efficient manner. The code
represents simplicial complexes as sets of integers (which are facets), as any
simplicial complex can conveniently be characterized uniquely as a set of facets.
There is also error checking in case someone enters a set of sets of integers that
are not facets. Regarding the nerve transformation, we were able to create a fast
method for computing the nerve. Using the original definition, time complexity
was O(2n), but our new algorithm brought it down to O(n2), where n is the
number of vertices of the simplicial complex.

c l a s s SComplex :

de f __init__( s e l f , f a c e t s ) :
i f not s e l f . facetsValueCheck ( f a c e t s ) :

r a i s e ValueError ( " Facets have i n c o r r e c t form " )

s e l f . f a c e t s = sor t ed ( f a c e t s , key=len )
s e l f . dim = 0
s e l f . v e r t i c e s = s e t ( )
f o r f a c e t in s e l f . f a c e t s :

f o r i in f a c e t :
s e l f . v e r t i c e s . add ( i )

i f l en ( f a c e t ) > s e l f . dim :
s e l f . dim = len ( f a c e t )

s e l f . v e r t i c e s = l i s t ( s e l f . v e r t i c e s )

max_vertex_index = 1
f o r f a c e t in s e l f . f a c e t s :

f o r v in f a c e t :
i f v > max_vertex_index :

max_vertex_index = v
i f max_vertex_index > len ( s e l f . v e r t i c e s ) :

ver t_dict = {}
n = 1
f o r v in s e l f . v e r t i c e s :
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vert_dict [ v ] = n
n += 1

re form_facets = [ ]
f o r f a c e t in s e l f . f a c e t s :

re form_facet = [ ]
f o r v in f a c e t :

re form_facet . append ( ver t_dict [ v ] )
re form_facets . append ( re form_facet )

s e l f . f a c e t s = re form_facets

de f __getitem__( s e l f , idx ) :
r e turn s e l f . f a c e t s [ idx − 1 ]

de f __len__( s e l f ) :
r e turn l en ( s e l f . f a c e t s )

de f __str__( s e l f ) :
r e turn s t r ( s e l f . f a c e t s )

de f p r i n t ( s e l f ) :
p r i n t ( s e l f )

# re tu rn s t rue i f alpha i s a s t r i c t subset o f A
de f i s_s t r i c t_sub s e t ( s e l f , alpha , A) :

i f alpha i s A:
re turn Fal se

f o r a in alpha :
i f a not in A:

re turn Fal se
re turn True

# re tu rns t rue i f alpha i s not a s t r i c t subset o f any s e t in A
de f is_maximal ( s e l f , alpha , A) :

i f l en ( alpha ) == 0 or l en (A) == 0 :
re turn Fal se

f o r a in A:
i f s e l f . i s_ s t r i c t_sub s e t ( alpha , a ) :

r e turn Fal se
re turn True

# re tu rns t rue i f every g iven f a c e t i s not a subset o f another f a c e t
de f facetsValueCheck ( s e l f , f a c e t s ) :

s i z e = len ( f a c e t s )
f o r f a c e t in f a c e t s :

i f not s e l f . is_maximal ( f a ce t , f a c e t s ) :
r e turn Fal se
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re turn True

de f get_powerset ( s e l f , A, k=None ) :
powerset = [ ]
s i z e = len (A)
masks = [1 << i f o r i in range ( s i z e ) ]
f o r i in range (1 << s i z e ) :

powerset . append ( [ aa f o r mask , aa in z ip (masks , A) i f i & mask ] )
i f k i s not None :

_powerset = [ p f o r p in powerset i f l en (p) == k ]
powerset = _powerset

re turn powerset

de f get_maximal_sets ( s e l f , A) :
maximal_sets = [ a f o r a in A i f s e l f . is_maximal ( a , A) ]
r e turn maximal_sets

de f higher_nerve ( s e l f , k ) :
V = s e l f . get_powerset ( s e l f . v e r t i c e s , k )
nerve = [ [ ] f o r _ in range ( l en (V) ) ]
f o r i in range (1 , l en ( s e l f ) + 1 ) :

f a c e t = s e l f [ i ]
F = s e l f . get_powerset ( f a ce t , k )
f o r f in F :

index = V. index ( f )
nerve [ index ] . append ( i )

__nerve = [ ]
f o r f a c e in nerve :

i f f a c e not in __nerve :
__nerve . append ( f a c e )

nerve = s e l f . get_maximal_sets (__nerve )
nerve = SComplex ( nerve )
re turn nerve

de f nerve ( s e l f ) :
nerve = [ [ ] f o r _ in range ( l en ( s e l f . v e r t i c e s ) ) ]
f o r i in range (1 , l en ( s e l f ) + 1 ) : # index ing f a c e t s (1 to # of f a c e t s )

f o r j in s e l f [ i ] :
nerve [ j − 1 ] . append ( i )

# removes non−unique e lements
__nerve = [ ]
f o r f a c e in nerve :

i f f a c e not in __nerve :
__nerve . append ( f a c e )
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# removes non−maximal f a c e s
nerve = s e l f . get_maximal_sets (__nerve )
re turn SComplex ( nerve )
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