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1 Introduction

Curves in high dimensional space are generally di�cult to visualize. In order to
examine their properties, we need to reduce them to a lower dimension. The goal
of this project is to explore the explicit ways of mapping rational normal curves
in a field to quadratic curves in a subspace. In this report, we will elaborate on
ways of reducing curves in Q4 to quadratics in two variables in Q2 by the way
of projection.

1.1 Rational Normal Curves

Definition 1.1. The rational normal curve in Qn is the image of the polyno-
mial parameterization � : Q ! Qn given by

�(t) = (t, t2, t3, ..., tn).

For the purpose of this project, we will simplify rational normal curves to
conic curves, such as circles, ellipses, parabolas, and hyperbolas.

2 Projection away from a Point

Projecting the curve from a point reduces its ambient dimension by one, and
the most basic example is from Q2 to Q.
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2.1 Example

In the picture above, the circle is projected from the topmost ”fixed point”
on the circle to the red line through its diameter. In order to represent the
circle as various points on the line, we choose a moving point on its perimeter
and compute the green line connecting the fixed and the moving points. The
intersection of the green line with the red line is the projection of the circle as
this specific fixed point. By varying the coordinates of the moving point, the
projection of the entire circle is represented as a continuous segment on the red
line.

However, not every rational normal curve is as simple. In general, the pro-
jection of these complicated curves are much harder to visualize, as illustrated
by the example below, where the curve is reduced from in Q4 to Q3.

2.2 Example

Suppose that

C =

8
>>><

>>>:

a2 � b

ab� c

b2 � ac

b2 � d

⇢ Q4

Choose the point
p1 = (1, 1, 1, 1),

away from which we want to project, and

p2 = (↵,�, �, �),

an arbitrary ”moving” point on C. The line defined by these two points is given
by:

p1p2 = h(↵� 1)t+ 1, (� � 1)t+ 1, (� � 1)t+ 1, (� � 1)t+ 1i

What does the projection of C from p1 look like on the plane w = �1? By
direct computation,

p1p2 \ {w = �1} = h�2(↵� 1)

� � 1
+ 1,

�2(� � 1)

� � 1
+ 1,

�2(� � 1)

� � 1
+ 1,�1i
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To understand the image, we must determine what polynomials vanish on the
image. It comes down to solving the kernel of the following ring homomorphism:

� : Q[x, y, z] ! Q[a, b, c, d,
1

d� 1
]/hIi

x 7! �2(a� 1)

d� 1
+ 1

y 7! �2(b� 1)

d� 1
+ 1

z 7! �2(c� 1)

d� 1
+ 1

where I is the ideal that defines C. We compute the kernel on Macaulay2 using
the following theorem:

Theorem 2.1. Let I be an ideal of Q[x1, ..., xn], and f 2 Q[x1, ..., xn] be a

polynomial. Let Q[x1, ..., xn,
1
f ] be the ring extension of Q[x1, ..., xn] by inverting

f, then there is a ring isomorphism

� : Q[x1, ..., xn,
1

f
]/hIi �! Q[x1, ..., xn, y]/(I + (yf � 1))

where

�(xi + I) = xi + (I + (yf � 1))

�(
1

f
+ I) = y + (I + (yf � 1))

Proof. We will only prove the special case Q[t, 1
t ] ' Q[t, s]/(ts� 1).

In this case �(t) = t+(ts�1) and �(s) = s+(ts�1). Define ' : Q[t, s] ! Q[t, 1
t ]

by
t 7! t

s 7! 1

t
.

Because t · 1
t � 1 = 0, ' factors through '̄ : Q[t, s]/(ts� 1) ! Q[t, 1

t ] where

t+ (ts� 1) 7! t

and

s+ (ts� 1) 7! 1

t
.

' is the inverse of �.
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Because of this, instead of mapping into Q[a, b, c, d, 1
d�1 ]/hIi we map into

Q[a, b, c, d, e]/hI + (e(d� 1)� 1)i in Macaulay2.

Therefore,

ker(�) = hy2�xz�yz�x+y, xy+xz+z2+y�z�1, x2�xz+yz+x�y�1i.

3 Projection away from a Line

Based on the results from section 2, one might argue that reducing dimension of
a curve can be attained through successive projections, dropping its dimension
by one in every iteration. This method is infeasible when there does not exist
any rational point on the curve. Under such circumstances, we need to consider
reducing the dimension by more than one at once. The following approach
diminishes the ambient space of a curve from Q4 to Q2:

1. Choose a rational line L that intersects the curve C at some points in a
field possibly greater than Q, and

2. Choose a 2D plane H that does not intersect L.

Together, any arbitrary moving point on the curve C and the line L define
a moving 2D plane Ep, which should intersect H at a single point q. The
projection away from L onto the plane H sends p to q. This procedure is
demonstrated in the example below.

3.1 Example

C =

8
>>>>>>>><

>>>>>>>>:

3xz + 5yz � 1

3xy + 5y2 � w

y � zw

3x2 + 5xy � w2

x� yw

xz � y2

⇢ Q4

Note that C does not contain any rational points, but it is defined in
the extension field Q[

p
37]4. We can find a line with rational coe�cients.

If (a1 + b1
p
d, a2 + b2

p
d, a3 + b3

p
d, a4 + b4

p
d) 2 C where ai, bi 2 Q then
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(a1�b1
p
d, a2�b2

p
d, · · · , a4�b4

p
d) = (A1, A2, A3, A4). So subtracting p1�p1,

we have (2b1
p
d, 2b2

p
d, 2b3

p
d, 2b4

p
d) where

p1 = (A1, · · ·A4) 2 Q[
p
37]4.

Therefore p1p2 must have rational coe�cients.
We begin by finding the point p1 on the curve.

p1 : (
31� 5

p
37

18
,
�5 +

p
37

6
, 1 + 0

p
37,

p
37� 5

6
)

Because L is defined by equations with rational (integral) coe�cients, the con-
jugate of p1, p2, written as

p2 : (
31 + 5

p
37

18
,
�5�

p
37

6
, 1� 0

p
37,

�
p
37� 5

6
)

is also a point on the curve. p1p2 = h 13 �
5
3 t, t, 1, ti the line away from which we

want to project. Given p = (↵,�, �, �) 2 C, we have the plane

Ep := ht↵� t

3
� 5

3
s+

1

3
, s+ t↵, 1 + �t� t, s+ t�i

Intersecting it with the planes y = 0 and x = 0,

Ep \ {x = y = 0} = (0, 0,
�3↵� 5� + �

1� 3↵� 5�
,

� � �

1� 3↵� 5�
)

The final projection is defined by the map

� : Q[x, y] ! Q[a, b, c, d,
1

1� 3a� 5b
]/hIi

where

x 7! �3a� 5b+ c

1� 3a� 5b

y 7! d� b

1� 3a� 5b

In order to find the kernel mentioned above using Macaulay2, again we rely
on theorem 2.1. The screenshot below shows the implementation:
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Thus ker(�) = 5xy � 3y2 � 5y + 1.

4 Future Goals

1. Prove theorem 2.1 in full generality;

2. Explore di↵erent types of spaces from which we could project a curve, e.g.
projecting from a plane;

3. Figure out a systematic approach to projecting regardless of the dimension
of the ambient space.
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