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1 Introduction
The Chinese Restaurant Process (CRP) generates random partitions of the natural
numbers and has applications in clustering algorithms in machine learning and
in biological modeling. The first goal of this project is to learn about stochastic
branching processes, the CRP, and the ordered CRP with reseating. The second
goal is to program a simulation to generate images and an animation of a surpris-
ing visual representation of the ordered CRP with reseating.

2 Theory

2.1 Exchangeability
2.1.1 Polya’s Urn

We begin our investigation by considering Polya’s urn model. Imagine that we
have an urn containing n colored balls, k of which are green and n − k are blue.
We can see that the probability of randomly selecting a green ball from the urn
is k/n and the probability of randomly selecting a blue ball is (n − k)/n. After
actually randomly choosing a ball, we observe its color, put the ball back into the
urn, and also put another ball of the same color into the urn. This process is then
repeated.
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Consider an example in which we draw three green balls and then two blue
balls from the urn (we will denote such a draw sequence as GGGBBB). It is easily
shown that the probability of obtaining such a sequence is(
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Now, consider another draw sequence with the same number of green balls and
blue balls, GBGBG. The probability of obtaining this sequence is(
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Surprisingly, these probabilities are the same. In fact, Polya’s urn model is ex-
changeable. This means that the probability of any particular sequence with k
green balls and n− k blue balls is

k! (n− k)!

(n+ 1)!
.

One can ask whether the percentage of green draws out of the total number
of draws converges to some number. To answer this question, we call upon the
following theorem:

Theorem (de Finetti). The probability distribution of any infinite exchangeable
sequence of Bernoulli random variables is a “mixture” of the probability distri-
butions of independent and identically distributed sequences of Bernoulli random
variables.

A consequence of the theorem is that the limit of the percentage of green draws
does indeed converge. In fact, this percentage is actually random with uniform
[0, 1] distribution.

2.1.2 Chinese Restaurant Process

We now consider a model much like Polya’s urn, the Chinese Restaurant Process.
To set the stage, imagine that we have a Chinese restaurant that has infinitely many
tables that can each seat infinitely many customers. When a new customer, say the
nth, enters the restaurant, the probability of them sitting at a table with m other
customers is m/n, and the probability of this nth customer sitting alone at a new
table is 1/n. This seating rule can be visualized in the following example where
n = 5:
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It turns out that this process is also exchangeable. Specifically, the probability
of having a particular seating configuration is not affected by seating order. One
can see this demonstrated in the following example. Suppose that we have a
sequence of 7 customers who sit at 5 tables in the order 1 1 1 2 2 3 4. The
probability of obtaining this sequence is

(1)

(
1

2

)(
2

3

)(
1

4

)(
1

5

)(
1

6

)(
1

7

)
=

1

168
.

Alternatively, consider the same scenario with the sequence 1 2 3 4 1 2 1, which
has the probability
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We can generalize this formulation of the CRP. Specifically, we can introduce
a two parameter (α, θ)-Chinese Restaurant Process, for α, θ ∈ R. These parame-
ters, α and θ, are used in determining new seating rules. In this new formulation,
the nth customer entering a restaurant with k non-empty tables will sit at a table
with m customers with probability

m− α
n− 1 + θ

and will sit alone with probability

θ + kα

n− 1 + θ
.

We will make the restrictions that α ∈ [0, 1) and θ > −α in order to avoid negative
probabilities and to keep our simulations interesting (cf. Section 3).

The above seating rule can be visualized in the following example where n =
5 and k = 2:
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Notice that the initial formulation of the CRP had α = 0 and θ = 1.

2.2 Chinese Restaurant Process with Reseating
As a further extension of the Chinese Restaurant Process, we now introduce re-
seating. As the name suggests, for a fixed number of customers in the restaurant,
reseating involves a uniformly random customer leaving the restaurant, reenter-
ing, and being reseated according to the (α, θ)-CRP seating rule. Specifically,
each customer leaves the restaurant with rate 1.

Notice that reseating allows for tables to “die off.” That is, it is possible for every
customer sitting at a given table to leave (the red table above demonstrates this
phenomenon). In fact, given a restaurant with n customers, its population will
decrease with exponential rate n and increase with exponential rate n + θ. The
individual table populations will evolve, too. A table in this restaurant with m
people will also lose customers with exponential rate m − α and gain customers
with exponential rate m.

In order to observe this birth-and-death cycle of tables, we want to keep track
of each table. Hence, we will randomly order the tables from left to right. Addi-
tionally, rather than only allowing new tables to be born on the right side, we will
allow for customers to sit at new tables at any point between two other tables, as
shown in the following illustration:
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In fact, The limiting proportions of customers in the (α, θ)-CRP, listed in
ranked order, is a random monotone decreasing sequence of positive real num-
bers that sum to 1. We say it has Poisson-Dirichlet distribution with parameters
(α, θ).

In 2009, Leonid Petrov [1] described the limit of evolution of the ranked se-
quences of table sizes in the (α, θ)-CRP with reseating. In 1981, Ethier and Kurtz
[2] did this for α = 0.

As we mentioned previously, one of the main goals of this project is to create
a graphical representation of the CRP. This representation arises through what we
will call scaffolding and spindles.

The scaffolding (black lines above) is a real-valued cádlág process (spectrally pos-
itive Stable(3/2)) of negative drift (or compensation) and positive jumps, where
the jump times are exponentially distributed with rate 1. The heights of the jumps
are given by the lifespans of tables. The leftmost jump corresponds to the leftmost
table, and so on. The spindles (colored portions above) are continuous, R+-valued
excursions with lifetime equal to the jump height. This means that the vertical
component corresponds to the lifespan of a given table in the restaurant, while the
horizontal component corresponds to the population of the table at a given time.

This graphical representation also gives us information about the distribution
of the population of the restaurant, which is to say the table populations, at any
given time. This comes through what we will call the skewer process.
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For some y ∈ R, we get the level y skewer by drawing a line across the picture at
y. Then, from left to right, we collect the cross-section of the spindles and slide
these values together, as if on a skewer, to remove gaps. As the skewer moves
up, the interval partition evolves continuously. The cross-section sizes shrink and
grow, which corresponds to the table populations shrinking and growing.

2.2.1 Moran Model

The Moran model is a stochastic process used in biological modeling. It describes
how alleles change in some gene pool from generation to generation. In this
model, the children choose their parent i.i.d.. The child will then inherit their
parent’s alleles. However, each child has some independent probability of mu-
tating and adopting the alleles of some other parent that currently exists in the
gene pool. This is to say that the child cannot mutate to a brand new genotype.
In this model, we see genetic drift, where alleles become more and less common
at random. There is a tendency, though, for common genes to stay common and
uncommon genes to stay uncommon.

The Moran Model is similar to the CRP with reseating. For example, the
children in the Moran model select types like new customers in the CRP randomly
select tables. Also, in both models we see the property that common types self-
perpetuate. Finally, the limit of the CRP with α = 0 is close to the Miran model
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with infinitely many types. One difference between the two, though, is that people
choose tables one-by-one in the CRP, whereas all children choose their parents at
once in the Moran model. Although mutation in the Moran model is similar to
sitting alone in the CRP, there is always a chance to introduce a new table in the
CRP, but the Moran model does not allow for the introduction of new genotypes.

2.3 Lévy Processes
We now turn out attention to Poisson processes, which model a number of “events”
happening over time. Consider the process (N(t), t ≥ 0) shown below:
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Here, N(t) has Poisson distribution with rate tλ for some number λ. Then,

P{N(t) = k} = e−tλ
(tλ)k

k!
.

The interarrival times in this process are i.i.d., specifically exponentially dis-
tributed with rate λ.

The Poisson process can be further generalized. As before, we have “arrivals”
or “hits” with rate λ, but instead of jumping by 1, we have i.i.d. jump sizes
according to some probability distribution Λ. The generalized Poisson process
can be visualized below:
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We can also add Poisson processes. If (N(t), t ≥ 0) is a Poisson process with
rate λ and (M(t), t ≥ 0) is a Poisson process with rate µ, then (N(t) +M(t), t ≥
0) is a Poisson process with rate λ + µ. We have a slightly different result for
generalized Poisson processes. If (N1(t), t ≥ 0) is a generalized Poisson process
with rate λ1 and jump distribution Λ1 and (N2(t), t ≥ 0) is a generalized Poisson
process with rate λ2 and jump distribution Λ2, then (N1(t) + N2(t), t ≥ 0) is a
generalized Poisson process with rate λ1 + λ2 and jump distribution

λ1Λ2 + λ2Λ1

λ1 + λ2
.

Now, consider an infinite series of generalized Poisson processes where jumps
come faster and faster but jump sizes get really small. This gives rise to a Lévy
process, which is a stochastic process on Rn (for our purposes, just R) with sta-
tionary, independent, increments. This process can be thought of as a continuum
analogue to random walks. In fact, there are only three behaviors of this process:

1. Poisson jumps

2. Brownian motion

3. (Deterministic) drift (and “compensation”)

The aforementioned scaffolding process is a certain Lévy process with downward
drift (or compensation) and upward jumps.
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2.4 Branching Processes
As we mentioned in Section 2.2, the lifetime of a table in the (α, θ)-CRP gives rise
to a sort of “birth-and-death chain.” It turns out that this chain actually converges
to the squared Bessel process with dimension −1, or BESQ(−1). Hence, our
spindles are actually squared-Bessel excursions.

We finally turn our attention to the Galton-Watson process. The Galton-Watson
process with offspring distribution µ, where µ is some probability distribution on
nonnegative integers, serves as a way to model the extinction of certain popula-
tions (Francis Galton used it to model the death of family names). We start with
some population, then at each time step, each individual dies and is replaced by a
random number of offspring with distribution µ i.i.d..

The Galton-Watson process is significant to us because BESQ(−1) can be
approximated by the Galton-Watson process with emigration rate 1. Since the
graphical representation of our model is reliant on generating spindles, the Galton-
Watson process gives us an easy way to simulate the birth-and-death chain of the
tables in our Chinese Restaurant.

3 Simulation
As we have mentioned, the ultimate goal of this project is to simulate the or-
dered CRP with reseating. So, we begin by attempting to simulate the three major
components of our graphical representation: the scaffolding, the spindles, and the
skewer. The end result of this simulation is an image such as the one below. (We
also produced animated GIFs, but these could not be included in this report.)
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3.1 Spindles
Creating spindles amounts to simulating the Galton-Watson process until our ini-
tial population reaches 0. As discussed in Section 2.4, how we actually simulate
the Galton-Watson process is important because we need our simulation to con-
verge to BESQ(−1). So, for the distribution µ, we sample from the binomial
distribution Bm(n, 1/2), where n is the current table population. For the emigra-
tion with rate 1, we sample from the Bernoulli distribution Ber(1/2). The new
table population is then 2 · Bm(n, 1/2) − Ber(1/2), which gives us the desired

10



convergence to BESQ(−1).
There is still an issue of an initial population, however. The initial table pop-

ulation should be 1, but this leads to an issue where the picture is not adequate
because there is 50% chance that the table dies off in one time step. So, we
choose an initial population of 100. This value is large enough to allow for large
spindles to be created but also small enough that the spindles in the image appear
to be generated from an initial population of 1.

Some examples of carrying out this simulation can be seen below. The spindle
colors are not significant; the colors are randomly chosen for the sake of making
a better picture.
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3.2 Scaffolding
In our preliminary simulations of spindles, we found that the average lifespan of a
table was double its initial population. More specifically, a table with initial pop-
ulation 100 typically lasted for 200 time steps. Since the scaffolding is negative
drift (or compensation) and positive jumps, we choose the slope of the negative
drift to be −200 in order to “cancel out” the expected table lifespan.

As mentioned in Section 2.2, the x-coordinates of the jumps are exponentially
distributed with rate 1. In order to simulate the scaffolding, then, we start at the
origin and sample from the exponential distribution Exp(1). We drift downward
until reaching the random x-coordinate and then jump and repeat the drift. This
process results in something looking like the image below.
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3.3 Skewer
The actual calculation of the skewer is rather simple. When we simulate a spindle,
we store the beginning and ending y-values of the spindle as well as the table
populations at each time step. So, to create the skewer, we fix some nonnegative
y-value and check if it was between the start and end points of each spindle. If it
is, then we calculate where the fixed y-value lands inside the spindle itself. We
then access the table population at that time step and plot double this value (since
the spindles are reflected horizontally over the center) on the skewer. We then
repeat this process for each spindle that contains the y-value.

3.4 Pictures
Combining all of these pieces, we were able to create nice visual representations
of the ordered Chinese Restaurant Process with reseating.
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