
WXML Final Report: Elliptic Curve Primality
Test

Rohan Hiatt, Daria Mićović,
Blanca Viña Patiño, Bryan Tun Pey Quah

Supervisors: Amos Turchet, Travis Scholl

Spring 2017

1 Introduction

Prime numbers are fascinating objects in mathematics, fundamental to num-
ber theory and cryptography. Primality tests are algorithms that take in an
integer as input and return whether that number is prime or composite. Most
practical applications require primality tests to run relatively fast despite the
input size; today, the largest known prime number has over twenty million
digits so proving that a number of this size is prime can be computationally
expensive.

The first deterministic primality test that also runs in polynomial time
relative to the binary representation of the input was published in 2002.
Although this algorithm, the AKS primality test, represents an important
breakthrough in the field of computational number theory, it is seldom used
in practice. Our objective this quarter was to determine why this idealized
algorithm is not practical enough compared to other primality tests; more
specifically, the Elliptic Curve Primality Test. Unlike AKS, this primality
test is probabilistic which means that the algorithm does not guarantee that
the output is entirely correct. We took our AKS implementation from last
quarter as well as implemented ECPP and compared both algorithms in
runtime and accuracy. Ultimaltely, we confirmed that probabilistic methods
are still preferred due to faster execution times despite the small chance that
the output is incorrect.

1

1.1 The initial problem

Our main motivation to study the Elliptic Curve Primality Proving (ECPP)
algorithm was to compare its asymptotic behavior to other primality tests
such as the AKS Primality test which we researched and studied the previ-
ous quarter. Although AKS is deterministic and runs in polynomial time, we
wanted to see why it is not used in practice as well as determine why ECPP
is a much better option. When testing crypto-sized primes, mathematicians
and cryptographers prefer probabilistic tests when testing large numbers be-
cause they have faster runtimes than deterministic algorithms. For each
primality testing algorithm, we studied and analyzed each individual step,
as well as compared their execution times and overall accuracy.

2 Progress

For the first half of the quarter we focused on learning basic algebra and
understanding arithmetic behind elliptic curves. Learning the elementary
mathematics behind elliptic curves was important because we needed to un-
derstand point addition and counting for the elliptic curve primality test. We
successfully implemented the double-and-add algorithm for torsion points as
well as a general naive point addition algorithm that calculates the slope
between two points and finds a third intersection. We also spent time devel-
oping our own version of Schoof’s algorithm which determines the number of
points on a given elliptic curve, but encountered many difficulties and have
not yet been able to get it running properly. Finally, we implemented the
Goldwasser-Kilian Elliptic Cuurve Primality Test and compared its perfor-
mance to our implementations of AKS, trial division, and Fermat’s Little
Theorem.

2

2.1 Computational

2.1.1 Adding Points on Elliptic Curves

Figure 1: Point addition on Elliptic Curves [3]

Elliptic curves are of the form y2 = x3+Ax+B where A and B are constants
such that 4A3 + 27B2 6= 0, with a special point O at infinity such that one
can give a structure of a group to its points in which O is the identity
element in the group. Geometrically, points P and Q on an elliptic curve
are added by drawing a line between them and reflecting the point of the
third intersection over the x-axis. From the geometric representation, we
can derive the algebraic formulas which we implement in our code.

We begin with the arithmetic of adding two distinct points in an elliptic
curve over a finite field, E(Fp). We have three cases: (1) where −P,Q are
distinct (and neither are equal to O), (2) where one of P,Q is equal to O,
and (3) where P = Q, that is, we double P .

We first discuss the case where −P,Q are distinct. The Silverman-Tate
text provides the following formulas that derive a third point, R := P

⊕
Q,

where
⊕

is the notation for addition of points on an elliptic curve, given
initial starting points (x1, y1) and (x2, y2):

x3 = m2 − x1 − x2 and y3 = −(mx3 + b)

where m is the slope of line between the two points and b is the y-intersect
of this point on the Cartesian plane. These are defined as:

m =
y2 − y1
x2 − x1

and b = y1 −mx1 = y2 −mx2

3

For the second case, if we are adding a point (x0, y0) to itself, in other words
doubling it, the slope m, where y2 = f(x), becomes:

m =
f ′(x0)

2y0

which is the implicit derivative of the elliptic curve for the point. Lastly, if
adding a point P to the infinity point O, we get P

⊕
O = P [3].

2.1.2 Schoof’s Algorithm

This algorithm determines the number of points on an elliptic curve over
finite fields which we needed for the Elliptic Curve Primality Test. Schoof’s
main idea behind this algorithm is based on the Hasse bound:

|#E (Fq)− q − 1| ≤ 2
√
q

which estimates that the number of points on an elliptic curve over Fq up to
a bound where q is a prime integer.

The algorithm also utilizes the Frobenius endomorphism which maps a
point to it’s q-th power:

π : (x, y) 7→ (xq, yq)

The Frobenius map has the characteristic equation

π2 − tπ + q = 0

where t = q + 1 − |E(Fq)| from here we can solve for the number of points,
|E(Fq)|. This is done by computing several t values modulo a set of prime
numbers and then recovering the value of t using the Chinese Remainder
Theorem.

2.1.3 Goldwasser-Kilian Elliptic Curve Primality Test

The Goldwasser-Kilian Elliptic Curve Primality Test uses randomly gener-
ated elliptic curves over Z/nZ to reduce the size of the input to be less than
216 so it can be tested by trial division. This bound is used because trial
division is faster than the elliptic curve test for numbers less than 216. The

4

algorithm requires that the number of points on the elliptic curve be of the
form kq where k is a small number and q is probably prime. In our implemen-
tation we used Fermat’s Primality Test to check for primality at this step.
Once we have a probably prime q, we can recursively plug it back into the
algorithm until it gets tested by trial division. At the final step, the result
of trial division indicates the primality of the initial input [4].

The Goldwasser-Kilian test is probabilitsic because it is not guaranteed
that we will find an elliptic curve with the condition on the number of points.
However, in practice this can be done quickly.

The Algorithm
Input: integer n > 1

1. If (n ≤ 216 for n ∈ N):
Output result from trial division.

2. Randomly choose an elliptic curve over Z/nZ.
3. Compute m = #(E(Z/nZ)) using Schoof’s Algorithm.
4. If m 6= kq where q is probably prime:

GOTO Step 2
5. Pick a point P on the curve such that mP = O and kP 6= O.
6. RESTART Step 1 with n = q.

5

2.2 Results

2e5 4e5 6e5 8e5 1e6
n

0.5

1

1.5

2

2.5

3

t

ECPP Composites
ECPP Primes
Trial Div Composites
Trial Div Primes

Figure 2: Graph of Number vs Time Taken in seconds

Figure 2 denotes a comparison between our implementation of both the
ECPP and trial division algorithms. For numbers less than 216 ≈ 6e5, ECPP
utilizes trial division. From our graph, we can see that ECPP takes (slightly)
more time than trial division does for these numbers - possibly due to added
machine overhead for running ECPP or machine error.

6

2e5 4e5 6e5 8e5 1e6
n

20

40

60

80

100

120

140

t

AKS Composites
AKS Primes
FLT Primes
FLT_Composites
Trial Div Composites
Trial Div Primes
ECPP Composites
ECPP Primes

Figure 3: Graph of Number vs Time Taken in seconds

Figure 2 is a comparison of all 4 algorithms we have implemented for both
prime and composite numbers. We can see that AKS takes the longest time
among the algorithms to certify prime numbers and our implementation of
a Fermat’s Little Theorem Test takes the second longest time.

3 Future directions

One of our biggest challenges this quarter was implementing Schoof’s algo-
rithm on Cocalc. Schoof’s algorithm was only ever designed to work with
prime q’s in Fq. However, the ECPP uses the algorithm both when q is and
is not prime, resulting in several issues. The first issue was that we needed to
create a rational function class so that certain operations were supported in
Fp. This took a while to make and led us to change much of the code we al-
ready had. Another big issue we had was creating a recursive function for nth

division polynomials so we started using the Cocalc implementation. How-
ever the built in function did not return the division polynomials we wanted.
Ultimately, we were unable to get Schoof’s algorithm working so we used the
Cocalc built in function to return the number of points on an elliptic curve.
In the future we want to spend time debugging Schoof’s algorithm so that
we can finally solve all issues associated with it. Additionally we would like
to gather more data for larger numbers. The whole point of primality testing

7

is to be able to determine primality for crypto-sized integers. However, the
tools we have now do not allow us to test such big numbers. Hopefully in
the future we can get access to the resources neccessary to obtain bigger and
better data.

References

[1] G. Musiker. Schoof’s algorithm for counting points on elliptic curves over
a finite field. 2005.

[2] SageMath, Inc. SageMath, the Sage Mathematics Software System (Ver-
sion 6.10), 2017. http://www.sagemath.org.

[3] J. H. Silverman and J. T. Tate. Rational points on elliptic curves. Under-
graduate Texts in Mathematics. Springer, Cham, second edition, 2015.

[4] O. Uzunkol. Atkins ecpp (elliptic curve primality proving) algorithm.
Tech. University of Kaiserslautern, 2004.

8

