WXML Final Report: Shapes of Julia Sets

Mariana Smit Vega Garcia, Malik Younsi, Peter Lin, Siyuan Ni, Ryan
Pachauri and Xiao Li

Winter 2017

1 Introduction

The goals of our project, shapes of Julia sets, are to find a better computational al-
gorithm for plotting Julia set and to approximate any set of disjoint Jordan curves on
the complex plane by plotting the Julia set of some polynomial. What is the Julia set?
Mathematically speaking, the Julia set of a polynomial is defined by J(P) = {z € C':
P™(z) 4 oo as m — oo}, and the Julia set is the set of complex numbers z which
do not approach infinity after infinite iterations of polynomial. Suppose that we have
a quadratic polynomial f(z) = 2z + ¢, where c is a complex parameter, then we plug
initial value z; to the polynomial and get 25, and plug 25 to the polynomial and get
23 We keep doing this process n times as n — oo, if z,, converge to infinity, then
2o is not in the Julia set of f(z). Otherwise, it’s in the Julia set. As the polynomial
varies, we can produce the different shapes of Julia set.

FIGURE 1. Julia Set of Polynomial 22 — 1, ¢ = (—1,0)

2 Progress

2.1 Plotting Julia sets

We tried two different methods for plotting Julia sets.

2.1.1 The obvious method

The "obvious method" to determine if a complex number belongs to a Julia Set is to
iterate points in the complex plane to the polynomial n times and check when n — oo,
will the result converge to infinity as well.

This method is straight forward, but at the same time, the drawback of it is also
easy to see: in real life, we can’t iterate a point infinite times, we have to choose a
certain number, for example, in our program, 100 times, and set a threshold, in our
program, 10, and check after 100 times of iterations, will the magnitude of the result
greater than 10. But this will bring us a new issue: there exists some number that after
100 iterations, they are still less than 10 although they actually will converge to infinity
at last which means they are not part of the Julia set, but in our program, we will treat
this kind of points as part of it. And this would make our plot lack of accuracy.

FIGURE 2. 22 — 0.8 + 0.156i, ¢ = (—0.8,0.156), by obvious method

FIGURE 3. 22 — 1.2 + 0.156i, ¢ = (—1.2,0.156), by obvious method

2.1.2 The distance estimation method

Distance estimation method (DEM) is a powerful technique for plotting Julia sets. Ba-
sically, DEM is based on various behaviors after iteration of polynomial. For each
initial value of 2o and polynomial f(z) = 2% + ¢, we can form a sequence z,, such that
z1 = f(20),22 = f(21), 23 = f(22)2n = f(2n—1), where n is the number of iteration.

The process of DEM:

The sequence z,, converges to the limit radius r, where r is a small positive real
number, this means all the points of the sequence z,, are close to zg with a sufficiently
small neighborhood. In this case, we say that zg is in the Julia set and we label it as 0.

The sequencez,, diverges to the limit radius r, then we compute and iterate its
derivative z,," = 2z,,_12,_1'. If the magnitude of z,,’ is greater than or equal to defined
threshold, then we say that z is close to the Julia set and we label it as -1. Otherwise,
we estimate the distance of z(by the following equation

d=2 2| log|z,|
z

20|
n

and label it as 1.
Then we set the different colors depend on its label.

FIGURE 4. 22 — 0.8 + 0.156i, ¢ = (—0.8,0.156), by DEM

FIGURE 5. 22 — 1.2 + 0.156i, ¢ = (—1.2,0.156), by DEM

2.2 Approximation

From a paper our mentor M. Younsi co-wrote, entitled "Fekete Polynomials and Shapes
of Julia Sets", we have a polynomial function:

—ns/2

Pn,s(Z) = ZWH?:I (Z - Zj)

In this function, E is the set of all points of the given Jordan curves, z;s are called leja
points, and is defined as following: consider z; to be a random point in F, then 29 is the
point which could mamimize the value |z — 21|, and z3 is the point that maximizing
|23 — 21|23 — 22|, n is the number of leja points, so for z,,, we want to find the point
that could maximize |z, — 21||2n, — 22| *|2n — 2n—1]|. cap(F) is called the logarithmic
capacity, it is calculated by

lim (JJlznsr = 2)""
j=1

And s is a small positive number. Here, n and s are the parameters that determine the
accuracy of our approximation, the bigger the n, the smaller the s, would produce more
accurate approximations, this is also make sense because when we have a bigger n, we
have more leja points, so we have more understanding of the Jordan curves, hence we
could produce more accurate approximations.

FIGURE 6. An approximation of a square with n = 100 and s = 0.0100

FIGURE 7.Same approximation with n = 600 and s = 0.00167

3 Future directions

3.1 Complex Shapes

We were able to successfully approximate a square; however, this square is justis just
the first step, in the future, we want to approximate more complex shapes, for exam-
ple, shapes with concave appearance, this require more cautious calculations and more
leja points. And as mentioned earlier, we want to approximate a set of disjoint Jordan
curves at the same time, but right now we can only do one. So we will keep imple-
menting our program to make it capable to do these tasks.

Also, because of time constraint, we did all the approximations by obbious method.
In the future, since we want to approximate more complex shapes and get more accurate
images, we try to use distance estimation method instead.

3.2 Fractal pattern

One interesting thing about Julia Sets is that they have the fractal patterns which means
when we zoom in around the edges, we should still be able to see the same shapes as
the outliers appear to be. We would like to make sure that our plots will showcase this
interesting effect.

	Introduction
	Progress
	Plotting Julia sets
	The obvious method
	The distance estimation method

	Approximation

	Future directions
	Complex Shapes
	Fractal pattern

