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1 Introduction

Students investigated properties of integer sequences via sound files created for each sequence. For
an increasing sequence xn of positive integers, a sound file is created by setting the xn-th sample
to a constant, non-zero value, and all other samples to zero. The CD-standard sampling rate of
44100 samples per second was used.

2 Quadratic residues - Christine Wolf

The Quadratic Residues subproject of the Number Theory and Noise project for the WXML
attempted to explore the large-scale behavior of quadratic residue sequences for various moduli,
as well as how this behavior related to particular characteristics of the chosen modulus. Because
of the rapid information absorption enabled by the use of sound files, characteristic patterns and
features were able to be detected even with relatively large moduli. Additional data collection
programs were also used to supplement the data from the sound files, such as a program that read
and recorded the size and frequency of occurence of gaps between residues.

The initial investigation revolved largely around prime moduli. It was discovered that the sound
files generated from the quadratic residues of prime moduli tended to have distinctive features –
a noisy foreground sound with a distinct pulsing “ping” in the background. This was consistent
across the tested primes but contrasted with numbers that were numerically close to the primes,
suggesting that characteristics of quadratic residue sequences are more determined by the factor-
ization of the modulus than by its numerical value. This idea was further supported by the simple
to prove lemma that if m = kn for some integers k, m, and n, then all quadratic residues of n
are also residues of m. That is, adding additional prime factors to a number can only remove
quadratic residues.

This property was further explored through moduli that were pure powers of primes. The powers
of any given prime tended to have a pure sound that decreased in pitch as the power increased,
which made sense given the previous lemma. These prime powers also tended to have the same
sizes of gaps across powers, as well as approximately the same ratios – for example, powers of 7
seem to have gaps of size 1, 2, 3, and 4 only, with the ratio between them fairly consistent no
matter what the power.
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Adding even one additional prime factor to these pure prime sequences usually quickly eliminates
the pure quality of the sound. The natural conclusion that it does this by upsetting the formerly
predictable size and ratio of gaps seems to hold true. Through looking at the spectrograms of
sound files created from prime powers and prime powers with an additional distinct prime factor,
we can see that the prime powers tend to have one dominant white line in their spectrogram at
a particular frequency. The lines of both primes involved in the modulus with two distinct prime
factors appear in its spectrogram, but as the power of the prime factors increase the lines become
more and more blurred until they are barely distinguishable. This makes sense with the increasing
“noisiness” of the sound as power increases.

2.1 Future directions

Current data suggests that there may be a pattern in the number, size, and distribution of gaps
between quadratic residues of a given modulus, particularly when the modulus is prime or a prime
power. Because the noise of the sound file for a sequence is determined by the gaps in the sequence,
examination of the sound files coupled with other methods of data collection might yield more
interesting discoveries.

3 Digit-based sequences - Elana Lessing

I was researching sound files produced by digits based sequences. In specific, my research was on
two different families of digit based sequences. The first family is composed of sequences generated
by integers whose digit’s sum is dividable by a certain natural number and the second family is
composed of sequences generated by integers whose product of their digits are under a certain
natural number.

However, before I begin discussing my results it is also important to note that when sounds are
generated from integer sequences, the sound is not the values of the sequences themselves. Instead,
because of the way our sound files are generated, the sound represents the gaps (or lack of) between
different values of the sequence. In addition, I would like to clarify some terminology. I will be
discussing repeating patterns in the sound files and when I do so I am referring to points where
the sound produced is identical or the value of the gaps between terms of the sequence is repeated.

3.1 Family One

As I mentioned before, this family of sequences are defined by all integers whose digit’s sum is
divisible by a certain integer m. However, I would like to construct a more rigorous definition. To
do so, let us define {xn} the sequence defined using the natural number m and n as a arbitrary
natural number.
Note that if n has i digits and we can rewrite n as the following:

n = 10ini + 10i−1ni−1 + · · ·+ 10n2 + n0



Using this form of n, we can say that

n ∈ {xn} if m
∣∣∣ k=i∑
k=1

ak

In this analysis I will be discussing sequences for all natural numbers m such that 0 < m < 10. One
of the first features I noticed was that all of the sound files I have generated have repeating patterns.
Some of these patterns are longer or shorter, but the sound files will always repeat themselves
eventually, which means that the pattern of gaps between different values of the sequence will
repeat itself.

While there are patterns of various lengths, in the sequences I have generated there have only
been two sequences for which the pattern has an length of 1; when m = 3 and m = 9. These two
sequences sound very distinct from the others and I will be dividing my analysis into three parts
accordingly (the first part when m = 1, the second when m = 3 or m = 9 and the third part for
all the other cases).

3.1.1 m = 1

I have including m = 1 more for the sake of completeness than because there is anything interesting
to say about the sound files for particular sequence. Every natural number is disable by 1 so
n ∈ {xn} for all n ∈ N, which means that this sequence has a density of 1 in N. Since every
natural number is in this sequence, the sound generated from this sequence is silence.

3.1.2 m = 3, 9

The first terms of the sequence {an} generated using m = 3 are {3, 6, 9, 12, 15, 18, 21, 24, 27, 30, ...}1
The first terms of the sequence {bn} generated using m = 9 are {9, 18, 27, 36, 45, 54, 63, 72, 81, 90, ...}2

When playing these sound files, it is very apparent that both of these sequences generate a high
pitched sound and that both of these sounds are very pure. There is no inconsistencies or any
clicking sounds in these sound files. To discuss why this is, we can start by observing the terms
of these sequence that I have shown. When m = 3 the sequence appears to be equivalent to
the sequence of all multiples of 3 and when m = 9 the sequence appears to be equivalent to the
sequence of all multiples of 9.

To show that this is true for the entire sequence we can use the well known result that that a
number is divisible by 3 or 9 if and only if the digits add up to a number that is divisible by 3
or 9 respectively. From this result, it follows that {an} can be rewritten as {an} = 3n and is the
sequence of every third number. In addition, it follows that {bn} can be rewritten as {bn} = 9n
and is the sequence of every ninth number.

We can now use this result to discuss the density of these sequences. Since an is every third
number and bn is every ninth number, we know that an is less dense that bn. This is reflected in

1Sequence A008585 in OEIS
2Sequence A008591 in OEIS



the sound files because an generates a much higher sound than bn does. In fact, the sound file
generated by an is so high pitched that it can be difficult to hear for some people.

The question then becomes when is the exact density of these sequences. Since we know an is
composed of every third integer and bn is composed of every ninth integer, is would make sense to
say that the density of an in N is 1

3
and the density of bn in N is 1

9
. Note that this is also saying

that, when m = 2 and m = 3, the density of the sequences generated in N are 1
m

. However, this
is only an informal argument and not a formal proof, an issue I will be addressing later.

3.1.3 m = 2, 4, 5, 6, 7, 8

The first terms of the sequence {cn} generated using m = 2 are {2, 4, 6, 8, 11, 13, 15, 17, 19, 20, ...}3
The first terms of the sequence {dn} generated using m = 4 are {4, 8, 13, 17, 22, 26, 31, 35, 39, 40, ...}4
The first terms of the sequence {en} generated using m = 5 are {5, 14, 19, 23, 28, 32, 37, 41, 46, 50, ...}5
The first terms of the sequence {fn} generated using m = 6 are {6, 15, 24, 33, 39, 42, 48, 51, 57, 60, ...}6
The first terms of the sequence {gn} generated using m = 7 are {7, 16, 25, 34, 43, 52, 59, 61, 68, 70, ...}7
The first terms of the sequence {hn} generated using m = 8 are {8, 17, 26, 35, 44, 53, 62, 71, 79, 80, ...}8

While the cases where m = 3 and m = 9 were very pure sounds, it is immediately apparent that
this group of sequences are different at first listen. In contrast to the pure sounds discussed before,
all of these sounds have many clicks in them. While you could play the m = 3 and m = 9 sound
files at any point and you would hear the same sound, this is no longer true as the sound changes
from moment to moments (though it does still repeat patterns). However, we can still talk about
some very interesting patterns in these sequences.

For example, there is the sequence {cn}, which is generated with m = 2. If you observe the terms
I have shown above, you can notice that this is approximately every other term of the sequence.
However, there are some exceptions and notably all of these exceptions fall on a value disable by
10.9 To talk about why this occurs, we need to discuss the behavior of this sequence in a bit more
depth. In specific, we know that when the sum of all the digits besides the 1s digit has a certain
parity, 1s digits of the same parity will correspond to terms in the sequence.10 This means that
while the parity of the sum of the digits besides the 1s digit stays constant, every other term will
be in this sequence. So it follows that only times the pattern can be broken is when the parity of
the sum of the digits besides the 1s digits changes, which is only possible around values divisible
by 10.

3Sequence A054683 in OEIS
4Sequence A268620 in OEIS
5Sequence A227793 in OEIS
6I have submitted this sequence to OEIS and it is currently pending review
7Sequence A273159 in OEIS
8Sequence A273188 in OEIS
9Note that there are values disable by 10 that are not exceptions. For example; 98, 100 and 102 are all terms

of this sequence.
10If the sum of all the digits besides the 1s digit has an even parity than adding an even 1s digit to this will

result in an even number, which is divisible by 2 and in the sequence. However, adding an odd 1s digit will result
in an odd number, which is not divisible by 2 and not in the sequence.
If the sum of all the digits besides the 1s digit has an odd parity than adding an odd 1s digit to this will result
in an even, which is divisible by 2 and in the sequence. However, adding an even 1s digit will result in an odd
number, which is not divisible by 2 and not in the sequence.



This pattern becomes very noticeable in the the sound file. The sound files generated by {cn} is
a series of fairly regular clicks with some moments of irregularity. These moments of irregularity
correspond to the exceptions that I was discussing above. While the sound files is moving though
values of the sequence too quickly for your ear to catch the individual points, all these exceptions
combined disrupt the sound enough for you to hear them.

While this pattern can not be articulated as eloquently for larger values of m, for all values of
m you can use a similar idea to construct a regular pattern with some exceptions present which
generates irregularities in the sound files.

Next, I would like to discuss the some other elements of these sounds files. As the m values grow
larger, the sound produced becomes lower. While the amount of clicks and variation within a
single sound file make it a bit difficult to discuss the pitch variation quantitatively, I can say that
the difference in the pitch very is noticeable when the sound files are played after one another. In
addition, it is very noticeable that the clicks are spaced further apart from each other as the m
values increases. Knowing this information, it would make scene that the density of the sequences
in N decreases as m grows larger. This is also backed up by the terms of the series I have included.
Averaging the gaps between the first 10 terms (these are the terms that I have included above)
we get the following chart

m Average gap
2 2
4 4
5 5
6 6
7 7
8 8

While this is certainly not a proof, we can see and clear pattern where m (when m = 2, 4, 5, 6, 7, 8)
and the average gaps of the first 10 terms of the sequence are equivalent. Using this information,
we can begin to discuss the density in N of these sequences. We know that roughly every mth
natural number gives us a terms of the sequence so we can say that the density is approximately
1
m

in N. However, I would like to again clarify that this is a informal argument and not a proof.

3.1.4 Next Steps

So far, I have made informal arguments about the density of these sequences in N when 0 < m < 10.
You can see what I have claimed the densities are for varies m values below:

m Density claim
1 1/1
2 1/2
3 1/3
4 1/4
5 1/5
6 1/6
7 1/7
8 1/8
9 1/9



Using this table, I can generalize this claim to be that the density in N of these sequences is 1
m

.

Proving this claim is my overall next step. In order to do this, I have started proving it for specific
values of m. I believe I have proved the density in N is 1
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for when m = 3 and I have begun to

prove the density of additional m values. I am hoping to do this for all the sequences discussed
here (when 0 < m < 10). After I complete this, I would then move on to generalizing proof for all
values of m ∈ N.

3.2 Family Two

Definition

I was looking at sequences which is defined as all the integers for which the product of their digits is
less then a certain integer m. However, there is one additional rule that is needed in the definition.
Most numbers contain a zero digit in them so a majority of numbers were being included in the
sequence regardless m I choose which was not creating very interesting sound files. In order to
remedy this I have been counting 0 terms as 1 terms in my products.

To construct a more rigorous definition of the sequence, let us say that {xn} is the sequence
constructed using the natural number m and let us say that n is a arbitrary natural number with
i digits.
Note that if n has i digits and we can rewrite n as the following:

n = 10ini + 10i−1ni−1 + · · ·+ 10n2 + n0

Using this form of n, we can say that n ∈ {xn} if

m <
k=i∏
k=0

n′k

when

n′k =

{
1 if nk = 0

nk if nk 6= 0

3.2.1 Analysis

All of these sounds have a similar sounding files. However, these sound files do not have a repetitive
pattern as the previous family did. Instead, these sound files are composed of a chucks of sound
following by a chuck of silence. As the sound files plays, the chucks of sound become progressively
shorter and the chunks of silence become larger. Eventually, there is silence with an occasional
sound being played.

The question then becomes why does this pattern occur. Let us use the case of
m = 40 as an example. We know that 3 ∗ 42 = 48 which greater than 40, so 344 will not be in out
sequence. However, we can also say that 334 through 339 will also be excluded from our sequence
because we are increasing the value of our product. In addition, since we are discounting digits
with the value of 0, we can say that 3340 through 3390 is excluded from out sequence. In fact, we
can say that 334∗10n through 339∗10n will be excluded from our sequence for any natural number



n. Note not only that this interval will get larger as n increases, but that this interval is not the
only interval that will do this. Any value that is not in the sequence can be used to construct an
interval similar to this one, all of which will grow larger as n increases and exclude more values
from this sequence.11 However, there will never be a point where there are no remaining values
in these sequence. Using a similar technique, we can say that 1 will be in this sequence so 1 ∗ 10n

will be in this sequence for any natural number n.

While all the sound files generated using this technique follow a similar pattern, there is differences
depending on the m value chosen. Most notably a smaller m value generates a sequence that
becomes largely silence much faster simply because there are more combinations of numbers that
result in a product larger that the m value.

3.2.2 Next Steps

While I have some observations on this family of sequences, I have yet to quantify them. While
I have some ideas for how to do so, perhaps by comparing the density of values in this sequence
under a certain natural number for different values of m, I have not yet applied this technique.
A long term goal would be finding a formula for the density under a certain natural number in
terms of m and that natural number.

4 Long sounds and approximations - Xinwei Fan

For the first half of the quarter, I was concentrating on making long sound files of integer sequences
like primes and abundant numbers. Sound files made using integer sequences with an upper bound
of 106 produces a time of 23 seconds. While this is long enough for a quick sense of what the
noise is like, sequences may not reveal audible properties unless over long periods of time. In this
case, for some sequences, I tried to create and listen to long sound files to find out what we can
hear in them. The biggest challenge I met is to generate the number sequences used for producing
sounds. Because long sound files, as long as 30 minutes, require huge amount of numbers. This
made my progress really slow, since I spent several days just to generate the number sequences in
text files.

For the second half of my research, I changed the way I looked into the sequences: instead of
trying to hear long sound files, I wanted to figure out how much density matters to sounds. To do
this, I simulated sound of abundant number sequence through density. The natural density of the
set of abundant numbers is between 0.2474 and 0.2480. The way I do this is by generating random
sequence with the same density and see how close can the sounds be. For random sequence, I
included all multiple of 6, all multiples of 20, and randomly generated the rest. The result is
cheerful: the audio with multiples of 6 and 20 sounds pretty similar to abundants than audio of
sequence only contains multiples of 6. From here I start to feel like I am producing something
others never tried, and how intriguing can mathematics be. If I am going to continue this project,
I think I will try to discover the relationship between density and audios further in other number
sequences.

11I have chosen this particular interval as an example, but the same is true for any interval of numbers which are
not in the sequence


