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Chapter 1

Dice proofs

1.1 Background and Introduction

Last quarter, the last group has proved that when A, B, and C are three dice, and p is the
probability that A beats B, q is the probability that B beats C, and r is the probability that C
beats A, then 1 <p+q+r<2.

This inequality tells us that if p, q, and r are equal, then they are at most s But we cannot
find a set of dice where the probabilities are all equal to g In Section 1.2 we present the proof

that p, g, and r cannot all be 2 at the same time. This proof shows that the map from dice to

voting system is not onto, and we have a crucial observation about dice and voting theory.
We further investigate properties of three dice in Section 1.3 and a property of four dice in
Section 1.4. Then we infer a general property in dice, which is formally proved by induction
in Section 1.5.

Note that in all proofs, there is no tie between dice.

1.2 Limitation of Translating Voting System to Dice

In this section, we start with the proof that p, q, and r cannot all be g, and conclude that
some cases in voting system cannot be shown in dice.

Proposition: p, g, and r cannot all be g

Proof:
Suppose A, B, and C are three dice, and a, b, and ¢ represent numbers on A, B, and C.
Let u be the possibility of a>b>c.
Let v be the possibility of c>a>b.
Let w be the possibility of b>c>a.
Let x be the possibility of c>b>a.
Let y be the possibility of b>a>c.
Let z be the possibility of a>c>b.
Let p=xty+z.
Suppose that the possibilities of A beating B, B beating C, and C beating A are all g

Since the possibility of A beating B is s, u+v+z=§ and W+X+y:§.



Since the possibility of B beating C is 2, u+w+y=§ and V+X+Z:§.
Since the possibility of C beating A is s, V+W+X:§ and u+y+z=%.
Because u+v+z=§, u+w+y=§, and V+W+X:§, then 2u+2v+2w+x+y+z=2.

Because u+v+z=§ and W+X+y:§, then u+v+w+x+y+z=1.

Since 2u+2v+2w+x+y+z=2 and u+v+w+x+y+z=1, then u+v+w=I.

Suppose p=0.

Then x+y+z=0, which means that x=y=z=0.

Since W+X+y:§, V+X+Z:§, and u+y+z=§, we have w=v=u=§.

Because y=z=0, which means that there is no such case that a is larger than ¢ and smaller
than b, and there is no such case that a is larger than b and smaller than c.

Then a>b>c cannot happen, and so u=0+ %, which is a contradiction.

So p cannot be 0.

Since p is possibility which cannot be negative, then p has to be larger than 0.

Since utv+tw+x+y+z=1 and p>0, if u+v+w=1, thenl+p+#1, which is a contradiction.

Therefore, our assumption is wrong, which means that it is impossible that possibilities

of A beating B, B beating C, and C beating A are all 2
Q.E.D

This instance is valid in voting system but not in dice, which means that there exists a
case that the voting system cannot be represented by dice. Then we can say that the map from
dice to voting system is not onto.

To explain why dice cannot show all possibilities in voting systems, we observe that all

possible outcomes of voters exist in voting theory, but we can only pick the labelling of the
dice sides in dice, and this restricts our set of outcomes.

1.3 Properties of Three Dice

Based on the inequality 1 <p+q+r<2, we discover the properties of three dice when the
sum is one and when the sum is two.

C Ge—— B

Proposition: If p+q+r=1, then at least one of p, q, r must equal 0.



Proof:

Suppose a, b, and ¢ represent numbers on dice A, B, and C.

Let u be the probability of a>b>c.

Let v be the probability of c>a>b.

Let w be the probability of b>c>a.

Let x be the probability of c>b>a.

Let y be the probability of b>a>c.

Let z be the probability of a>c>b.

Then, p=u+tz+v, g=w+y+u, and r=v+x+w.

Suppose p+q+r=1.

Then, (utz+v)Hw+y+u)+H(vtx+w)=1.

We also know that u+v+w+x+y+z=1.

We get that u=v=w=0 and x+y+z=1.

Consider the case when the largest side of all dice is on dice A, and that side is rolled.

Then, the only possible outcomes are a>b>c or a>c>b, which have probabilities u and z.

Since u=0, then a>c>b must happen.

Since A is independent of B and C, this means that 1-q, the probability that C beats B,
must equal 1.

The cases where B or C have the largest side follow the same logic, by symmetric
argument.

Thus, if p+q+r=1, then at least one of p, q, r must equal 0.

Q.ED

Proposition: If p+q+r=2, then at least one of p, q, r must equal 1.

Proof:

Suppose a, b, and ¢ represent numbers in sets A, B, and C.

Let u be the probability of a>b>c.

Let v be the probability of c>a>b.

Let w be the probability of b>c>a.

Let x be the probability of c>b>a.

Let y be the probability of b>a>c.

Let z be the probability of a>c>b.

Then, p=u+tz+v, g=w+y+u, and r=v+x+w.

Suppose p+q+r=2.

Then, (utz+v)+Hw+y+u)+H(vHx+w)=2.

We also know that u+v+w+x+y+z=1.

We get that u+v+w=1 and x=y=z=0.

Consider the case when the largest side of all dice is on dice A, and that side is rolled.

Then, the only possible outcomes are a>b>c or a>c>b, which have probabilities u and z.

Since z=0, then a>b>c must happen.

Since A is independent of B and C, this means that g, the probability that B beats C, must
equal 1.

The cases where B or C have the largest side follow the same logic, by symmetric
argument.

Thus, if we assume p+q+r=2, then at least one of p, ¢, r must equal 1.

Q.ED

1.4 Property of Four Dice



In this section, we look at what happens to the four dice situation when the sum of
probabilities is at the upper limit.

Let A, B, C, D be four dice, and p, is the probability that A beats B, p, is the probability
that B beats C, p5 is the probability that C beats D, and p, is the probability that D beats A.
Because 1 <p;+p,tp; <2 and 0<p, <1, then | <p,;+p,+p3+p, <3.
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Proposition: If p,+p,+p;+p,=3, then at least two of p;, p,, p3, and p, must equal 1.

Proof:
Let q be the probability that C beats A. Then 1-q is the probability that A beats C.
Then A, B, C and A, C, D are two cycles, and each cycle has three dice.
We know that p;+p,+p3+ps+1-q+q=4, 1 <p;+tp,tq<2, and 1 <p;+p,+1-q<2.
Then p;+p,+q=2 and p;+p,+1-g=2.
Case 1:
Suppose q equals 1, then 1-q equals 0.
Because p;+p,+1-q=2, then p;+p,=2.
Since probability should be between 0 and 1, p;=p,=1.
Because p; +p,+q=2 and g=1, then p; +p,=1.
So it is possible that one of p;, p, is 1 and the other is 0, or both p; and p, are
between 0 and 1.
Thus, no matter whether either p; or p, is 1, p; and p, equal 1. So at least two of p,,
D2, P3, and p, must equal 1.
Case 2:
Suppose q is between 0 and 1, then 1-q also is between 0 and 1.
Because p; tp,+q=2 and p;+p,+1-q=2, one of p, and p, and one of p; and p, are 1.
Thus, two of p;, p,, pP3, and p, must equal 1.
Therefore, if p;+p,+p3+p,=3, then at least two of p;, p,, p3, and p, must equal 1.
Q.ED

So we have shown that when the sum of probabilities is at the upper bound, if we have
three dice, then at least one of probabilities must equal 1, and if we have four dice, then at



least two of probabilities must equal 1. We infer that if we have n dice and when the sum of
probabilities is n-1, then at least n-2 of probabilities must equal 1.

1.5 Property of N Dice

In this section we use induction to prove our statement about n dice.

Proposition: For every number n dice (n=3), if we arrange all dice D,, D,, D5, ...D,, in a
circle and assign p;, p,, ...p, be the probabilities that D, beats D,, D, beats D5, ...D,, beats
D, then 1 <p;+p,+p3+p,s+...+p, <n-1. When the sum equals n-1, at least n-2 of p,,

D2, ...py, Mmust be 1.

Proof:

Base case:

If n=3, we have shown in Section 1.3 that when p; +p,+p3=2, at least n-2=1 of p,, p,, p;3
must be 1.

Induction step:

Suppose there are k dice, | <p;+p,+...+p, <k-1, and when the sum equals k-1, at least
k-2 of py, py, ...prequal 1.

Let q be the probability that D; beats D;. Then 1-q is the probability that D; beats Ds.

Then we have 2 cycles: one cycle has three dice D,, D,, D5 and the other cycle has k dice
Dy, Dy, D3, ...Dyyq.
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Because 1 <p;+tp,+ps+...4p <k-1 and 0<pp ;1 <1, | <p;+p,+tp3+... P tPr+1 <k.

When py+p,+p3+pst.. 4Dk tD1=K, we have py+p, tp3+pst.. AP tPes +(1-
QPrq=k+1.

We know 1 <p;+p,+q=<2, and because of k dice, 1 <p3;+p,+...*piPr+1+(1-q) <k-1.



Then p1+p,+q=2 and p3+py+.. AP tPp+1H(1-q)=k-1.
Case 1:
Suppose q equals 1, then 1-q equals 0.
Because p3+pst... t 0k tPk+171-q=k-1, then p3+p,+.. . +pi Dk 1=k-1.
Since probability should be between 0 and 1, p;=1 for i=3, 4, ...k+1.
Because p; +p,+q=2 and g=1, then p;+p,=1.
So it is possible that (1) one of p;, p, is 1 and the other is 0, or (2) both p; and p, are
between 0 and 1.
Thus, no matter whether either p; or p, is 1, p; through py,; all equal 1, which are k-
1 values. So at least (k+1)-2 of py, D5, ...DPr+1 €qual 1.
Case 2:
Suppose q is between 0 and 1, then 1-q also is between 0 and 1.
Because p;+tp,+q=2 and p3+p,+...+pi 0k 41 H(1-q)=k-1, one of p; and p, is 1, and
k-2 of p; 1s 1 (=3, 4, ...k+1).
Thus, (k+1)-2 of py, P2, ...Pr+1 €qual 1.
Case 3:
Suppose q equals 0, then 1-q equals 1.
Because p; +p,+q=2, then both p; and p, are 1.
Because p3+ps+...+piPr+17(1-q)=k-1 and at least k-2 of p; (i=1, 2, ...k) should be
1 in the circle of k dice, then k-3 of p;+p,+...+p,+pk4+1 should be 1.
Thus, at least k-3+2=(k+1)-2 of p;, po, ... Pr+1 €qual 1.
So we have shown that whenever our proposition is valid for any integer k=3, k+1 also

works for our proposition.

Therefore, for every number n dice (n=3), 1 <p;+p,+ ...+p,, <n-1, and when the sum

equals n-1, at least n-2 of p;, p,, ...p, must be 1.
Q.E.D



Chapter 2

Background and Motivation

2.1 An Introduction

Social choices procedures have since long shaped the foundations of the society that we
live in. The need to elect/choose a representative of the people through some legitimate and
logical mechanism has since long bewildered us humans. Perhaps, due to this reason, various
voting systems/social choice procedures have been formulated and various communities have
different methods/procedures to choose the social choice winner. Any logical system is almost
inevitably connected to the field of Mathematics and this field also entails an underlying
connection to mathematics. However, complex systems like theses are often fundamentally
difficult to comprehend. The aim of this research is to thus decompose this vast voting system to
a system of dices. It seems intuitive at first to perceive the voting system that we have as a
system of dices. After all, dices are all about probabilities and the the voting system/social choice
procedure also rests on the field of probability. It thus would make sense to interpret the voting
system as a system of dices in some abstract way. But what exactly could be the analogy and the
mathematical foundations of it?

2.2 The analogy between dices and voting

In the traditional voting system, each voter gives a ballot and it contains a ranked
preference of all the candidates starting from the most favorite from the least favorite and then
based on the voting system we choose, the winner is determined after considering the ballots of
all these voters. It is worthwhile to mention that there could be various voting systems and a
particular ‘profile' (sequence of ballots of all voters) could yield different social choice winners
for different voting systems. Here comes the motivation and the analogy for the dice. We could
interpret the candidates standing in the procedure as being dices and the set of outcomes that we
get when we roll these dices as being the individual preference lists or ballots. When we roll
all the dices once, we get one outcome and that outcome is a ballot. Intuitively, if a dice has very
high numbers on its faces, then it would always beat most of the other dices and would emerge
as a social choice winner. Lastly, in this grand scheme of things, there are various attributes of
social choice procedures like ‘Always-a-Winner’, ‘Condorcet Method’ among others. The voting
systems that we use may or may not obey these attributes. And the dice scheme of things may
behave differently from the normal voting systems for these various social choice procedures.



Chapter 3

Voting Systems to their Dice
counterparts

3.1 Voting System’s Attributes

Through our research, we focused primarily on five attributes that any voting system that is said
to represent the “will of the people” has. These attributes are Pareto, Monotonicity, IIA, Always

a winner, and Condorcet winner. The first three listed have more detail in chapter 4, but briefly :

1.
2.

Pareto means that if everyone likes A more than B, B shouldn’t win;

Monotonicity means that if A beats B, then a re-election occurs and more people rank A
higher, A should still beat B;

ITA means if A beats B, then a re-election occurs and everyone who liked A more than B
still like A more than B and vice versa, A should still beat B.

Always a winner is self explanatory, this voting system always has a winner.
Condorcet winner: if by using the condorcet voting method, you get the same winner,
then the voting system is said to fit the condorcet winner criteria.

Our first challenge was to describe these in terms of dice rolls, and we found these mirrors for
these (again the first 3 have more detail in chapter 4):

1.
2.

Pareto for dice means that all the sides on dice A are greater than that on dice B.
Monotonicity for dice means that if dice A beats dice B, then increasing the sides on
dice A should still cause it to win.

IIA for dice means that if A beats B, changing the sides on dice C should have no effect
on A beating B.

Always a winner for dice is still self explanatory, there is always a dice that wins
Condorcet winner for dice means that you get the same winner using the condorcet
method for dice (talked about in the next section)



3.2 Voting Systems

For our research, we focused on six voting systems :

1. Condorcet : The Condorcet System is applied by taking one on ones with all the
candidates, the winner is the candidate that wins every single one on one. For example, in
a system with three candidates, A, B, and C, if A > B and A > C then A wins. However,
if we have A > B and A <C, then A does not win here. Thus, in the condorcet system it is
possible to not have a winner. Also previously mentioned, but if any of the following
voting systems have the same winner when this method is applied to its ballots, then it is
said to have the condorcet attribute. Later on we started looking at Copeland’s method,
which is equivalent to Condorcet’s method, but with the difference that if there is no
Condorcet winner, then the winner is the Plurality winner (the one with the most first
place votes)

2. Plurality : As mentioned previously, the Plurality winner is the one with the most first
place votes.

3. Borda Count : The Borda Count method is looking at where each candidate is placed on
each ballot, assigning points based on the position, then summing all points together. The
one with the most points is the winner. For example, if my ballot were to be A B C D,
then 3 points would go to A, 2 to B, 1 to C, and 0 to D. Then, we apply this to every
single ballot, add the points, and the candidate with the most points wins.

4. Hare’s Method : This is done by looking at which candidate has the least first place
votes, removing them, then adjusting the ballots by moving all remaining candidates up if
needed, then repeat until one candidate is left.

5. Dictatorship : Select one ballot. That ballot decides the winner.

6. Sequential Pairwise : This is done by creating an order that you want the candidates to
face off in, then the first two go one on one, and the winner of that goes one on one with
the third one, and so on. For example, if we decide our order is A, C, D, B then first we
do A vs C, and the winner of that goes against D, and the winner of that goes against B.

3.3 Voting Systems and their Attributes

So now that we have desirable traits, and voting systems to focus on, we have to know which
voting system has what attributes. The proofs for these are in the textbook Mathematics and



Politics : Strategy, Voting, Power, and Proof, but the table is as follows - X means that the
system does not have this attribute, Y means it does (note: this is for the voting systems
themselves, not for their dice counterparts):

Pareto ITA Monotonicity | Always a Condorcet
Winner winner
attribute

Condorcet Y Y Y X Y
voting

system

Plurality Y X Y Y X
Borda Y X Y Y X
Hare’s Y X X Y X
Dictatorship | Y Y Y Y X
Seq Pairs X X Y Y Y

As we can see, no voting system has every single positive attribute. In fact, we have that the only
system that has Monotonicity, IIA, and Pareto (arguably the 3 most important) is a dictatorship -
This is Arrow’s Theorem (which will be covered more in chapter 4)

3.4 Converting Dice to Voting Systems

One goal of our research was to convert voting systems in vote theory into equivalent systems
with dice. We accomplished this by taking the probability of each outcome, then assigning an
equivalent amount of voters to it - by creating a common denominator for all probabilities, then
in our system the number of voters would be the denominator, and each individual ballot would
be the numerator of that probability. For example, if our outcomes were A > B > C with
probability % , B> A >C probability 5 , and C > B > A probability '% , then our voting system
would have 1 ballot for ABC, 2 ballots for BAC, and 3 ballots for CBA, for a total of 3 ballots.
After applying the method like this, we would proceed with the standard definition of each
voting system. The only major difference is with dictatorship, where we decided that dictatorship
for dice would be that we only focus on one outcome.



3.5 Dice Systems and Their Attributes

Looking at our conversions from voting systems to their dice system, we wanted to see that they
would have all their attributes. Our hypothesis is that the dice systems would maintain all the
attributes, and while we do not have every single attribute, we have most and what we have so
far is that they do line up. The basic idea behind proving these is either by finding an example, or
using algebra/logic to show that they do in fact have the quality.

Pareto ITA Mono Always a Condorcet
Winner winner
attribute

Condorcet Y Y X ? ?

Dice System

Plurality Y X Y Y

Borda Y X Y Y X

Hare’s Y X X Y ?
Dictatorship | Y Y Y Y

Seq Pairs X X Y Y Y

We believe that the reason they line up is that we map the create a function F : A -> B where A is
the dice rolls, and B is the voting system, then F is injective (but not surjective - why we believe
Arrow’s Theorem failed) and thus we have F*: B -> A, which allows the properties of the voting
systems to be maintained.



Chapter 4

Proving Arrow’s Theorem for Dice

4.1 Limitation in Mapping Dice to Voters

When we first began our process of mapping dice to voters, we ran into problems quickly
because of the restraint that dice outcomes have on voters.

Crucial Observation: In voting theory, all possible outcomes of voters exist. With dice,

we can only pick the labelling of the dice sides, and this restricts our set of outcomes.
This was an issue we tried to work around when we could not exactly find a one-to-one
correspondence with our dice analogy for monotonicity, but ended up being a big factor in our
findings when we worked with Arrow’s Theorem. Labelling the dice sides gives us a set of
outcomes, but we cannot change a single voter like we could in voting theory. The sides define
our set of voters, and it is difficult (often impossible) to get the exact outcomes we need in some
situations when we want to observe phenomena that simply cannot exist when we are restrained
to only voters given by dice outcomes.

4.2 Dice Analogies for Voting System Attributes

When we first began working on proving Arrow’s Theorem in our subset of voters
limited by dice, we first had to define what voting system attributes mean for dice. We have
already previously defined what voting systems look like for dice, so we can now use the three
attributes for voting systems to observe and quantify what properties a “fair” voting system has.
The attributes we chose to observe are the Pareto condition, Monotonicity, and Independence of
Irrelevant Alternatives (I1A).

4.2.1 Pareto condition
The resource we used, Mathematics and Politics by Taylor and Pacelli, defined the Pareto
condition (often abbreviated Pareto) for voting systems to be where:

If everyone prefers x to y, then y is not a social choice.



In this definition, social choice is the winner of the ballots. We observed that this was an
extremely weak condition, since it is not common that every voter prefers one candidate over
another. That being said, we defined Pareto to be:

If dice 4 has all sides greater than all sides on dice B, dice B should not win.
We define a dice to win when it rolls the highest side in any given roll of the dice. We wrote this
to be the definition of Pareto for dice because in this case, when we map the dice outcomes to
voters, we can see that dice 4 will always be higher than dice B in every voter’s ballot, which
can directly be translated to everyone preferring the candidate A to candidate B. Following this
logic, we can see that if everyone prefers candidate 4 to candidate B, then candidate (dice) B
should not win.

4.2.2 Monotonicity
In voting theory, monotonicity is defined to hold for every candidate x:
If x is the social choice and someone changes their preference list to move x up one spot,
then x should still be the social choice (Taylor, Pacelli).
This means that when we theoretically improve the winner’s chances, then that candidate should
still win. When we defined monotonicity for dice, we decided that we can change the side on a
dice to be higher to increase that dice’s chances of winning. This leads us to our definition of
monotonicity for dice:
If dice A4 beats dice B, and we change one side of dice A that was less than than a side on
B to be larger than that side, dice 4 should still beat B.
This naturally follows from our definition of increasing a dice/candidate’s chances in the
election. There are a few issues with this definition because of the fact that in voting theory, we
only move the candidate x up in one ballot, while in dice, changing one side on one dice may
change some or all of the ballots. This is a big difference, since we cannot just change one side
of dice without changing multiple outcomes. The definition of monotonicity also states that the
voter only moves the candidate up one spot, whereas in our definition, it may be that changing
one side might move that candidate up many spots in the ballots depending on what the changed
side becomes.
This means that our definition of monotonicity is a bit different from what it means for a voting
system to be monotone in voting theory, but we tried to work with this definition throughout the
quarter anyway.

4.2.3 Independence of Irrelevant Alternatives (I1A)

ITA is defined in voting theory to be:
For every pair of alternatives x and y, if x beats y, and one or more voters change their
ballots but do not change whether they like x over y or y over x, then x should still beat y
(Taylor, Pacelli).



This means that between any two candidates x and y, as long as no one changes their mind about
their preferences on these two candidates, then between y should still not win. Since we wanted
their positions to remain the same relative to each other in every single ballot, we define IIA in
dice as:
If Dice 4 beats dice B, then changing the sides on dice C should not impact dice 4
beating dice B.
This gives us the freedom to change all of the sides on any dice besides dice 4 and dice B. Since
we will not change the sides of 4 and B, we know that the relative outcomes within each
ballot/outcome between each other will remain the same.

4.3 Limitations in Proving Arrow’s Theorem for Dice

In voting theory, Arrow’s Theorem is defined as

If a voting system satisfies both Pareto and I1A, then that voting system is a dictatorship.
Naturally, since we had defined dice analogues for Pareto and I1A, we wanted to prove that this
theorem would hold in the subset of voters represented by dice outcomes. That is, we wanted to

prove Arrow’s Theorem using our dice analogues for Pareto, IIA, and the voting systems which
we had defined.

We began trying to prove Arrow’s Theorem for dice using the lemmas that were used to prove
Arrow’s Theorem in voting systems in Mathematics and Politics (Taylor, Pacelli). Beginning
with the first lemma, we had already ran into an issue, going back to the crucial observation in
4.1. We are very restrained when we limit our set of voters to the subset of ballots we receive
from dice outcomes, and this prevented us from proving the first lemma of the proof we used
when we tried to prove Arrow’s Theorem.

The first lemma in the proof of Arrow’s Theorem gave us three subsets of voters, which we had
to map to our dice outcome voters. These three subsets made up the entire set of voters, and
listed their preferences for three different candidates. In voting theory, we can define these
voters’ ballots to be the preferences we want them to be, which is why this lemma can be proven
easily in voting theory. In dice however, we could not define what it means for three outcomes to
be the only three possible outcomes for all of the dice. This goes back to our theorem proven in
chapter 1, where we added three dice probabilities and observed the equality on the upper bound.
We proved that if three dice probabilities added up to the upper bound, 2, then one of the
probabilities must be zero. This means that when we try to define these subsets of voters as dice
outcomes, then one of the sets must be empty. This is a case that might work/be covered by the



lemma, but does not help us prove Arrow’s Theorem because we cannot prove the lemma for all
sets of voters where this occurs, since we are already given the sets of voters.

Therefore, we cannot prove Arrow’s Theorem (at least, using the lemmas that our resource used
to prove Arrow’s Theorem) for dice, as we are too restrained by the subset of voters given by
dice outcomes.



