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1 Introduction

A Diophantine Equation is a polynomial equation, usually with two or more
unknowns with integer coefficients, in which we look for integer or rational
solutions. The simplest case is where we look for integral solutions (x, y) in
the linear equation:

ax + by = c

where a, b, c are known integers.

The study of Diophantine Equations and their analyses dates back to
the year AD 300, when a Greek mathematician, Diophantus of Alexandria,
wrote about them in his series of books, Arithmetica. In fact, a problem in
Diophantus’ Arithmetica led Pierre de Fermat in 1637 to annotate a state-
ment within the margins of his own copy, famously known as Fermat’s Last
Theorem which would go on unresolved for the next 4 centuries.

This quarter, for our study of Diophantine Equations, we investigated
equations represented as plane curves with a genus of 2, with the following
questions in mind: Are there any solutions to these equations? If so, how
many are there? Can we provide a bound on the number of rational solutions?
What does this bound depend on?
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1.1 The Initial Problem

We initially found that Diophantine equations looked easy to solve but upon
further study we found that the underlying theorems run very deep. This
brought up questions surrounding understanding the set of solutions to spe-
cific Diophantine equations, and how solutions to some equations provide
approximations to certain algebraic numbers. In general, no method or algo-
rithm exists for finding sets of solutions to all Diophantine equations, so we
studied specific cases in an attempt to find some sort of pattern. Specifically,
Hilbert’s Tenth Problem asks whether such an algorithm can be found.

2 Progress

2.1 Theoretical

2.1.1 Genus

We consider Diophantine equations represented as plane curves to understand
the relationship between singularities, genus, and the number of rational
solutions. First, we begin by defining a few terms. A curve is called non-
singular (or smooth) if it has no singular points. Let C be a curve, then
mP (C) is the multiplicity of a singular point P of C and represents the
number of times P appears as a root of C. Furthermore, a singular point P
on the curve is called an ordinary multiple point if it has mP (C) distinct
tangents at P . The figures below give visual examples of curves with ordinary
multiple points and non-ordinary multiple points.

Figure 1: Curve represented by y2 = x3+x2 with one ordinary multiple point
at (0,0).
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Figure 2: Curve represented by y2 = x3 with one non-ordinary point at (0, 0).

The curve in Figure 1 has two defined distinct tangents at (0, 0) and no
other singular points so we have one multiple ordinary point with multiplicity
2. The case is different for the curve in Figure 2. Intuitively, there are two
branches passing through the origin, so if we consider them separately, we
would have two tangent lines that would eventually merge at y = 0. When
computing the multiplicity of this point on y2 = x3, we do get that the
tangent at y = 0 has multiplicity 2. Thus, we do not have mP (C) distinct
tangents at (0, 0) , making (0, 0) a non-ordinary point.

Finally, if C only has ordinary multiple points, then the genus is given
by the following formula

g =
(d− 1)(d− 2)

2
−

∑
P∈sing(C)

mP (C)(mP (C) − 1)

2
, where d = deg(C).

On the other hand, if C does not only have ordinary multiple points, the
formula gives us an upper bound for g, meaning that C could have a lower
genus than the right side of the above formula. Now we have a way of
computing the genus of a curve in a way that only depends on the degree
and multiplicity of singular points. Consider the elliptic curve y2 = x3 − x.
Elliptic curves are smooth, and thus non-singular, which means that the sum
in the above formula is 0. Thus, the genus of such curve depends only on
the degree which is 3 in this case. We can easily compute the genus of this
curve to be

g =
(d− 1)(d− 2)

2
−

∑
P∈sing(C)

mP (C)(mP (C) − 1)

2
=

(3 − 1)(3 − 2)

2
− 0 = 1
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2.1.2 Faltings’ Theorem

The genus is an important curve property as it can provide a bound for the
number of rational points:

Theorem. Faltings’ Theorem (1983) Let C be a smooth curve defined
over Q of genus ≥ 2. Then, the number of rational points on C is finite.

In other words, Faltings’ theorem tells us that all curves which have genus
2 or higher cannot have an infinite number of rational points. This theorem
is actually stronger since it applies to finite extensions of Q, but for our
purposes, we will consider smooth curves over Q. The Lang conjecture, which
is a conjectural generalization of Faltings’ theorem in higher dimensions is
one of the most important conjectures in Diophantine geometry. Caporaso,
Harris, and Mazur proved in their paper that if the Lang Conjecture is true,
then the following conjecture must also be true.

2.1.3 Uniformity Conjecture

Conjecture. Uniformity Conjecture Let g ≥ 2 be an integer. There
exists a number B(g), depending only on g, such that for any smooth curve
C with fixed genus g defined over Q, the number of rational points on C is
less than B(g).

This is a very powerful conjecture because it states that all curves of the
same genus g will have the same upper bound for the number of rational
points. If this conjecture is proven wrong, then the Lang conjecture would
also be untrue. However, there exists a large amount of evidence supporting
the Uniformity Conjecture. One example is the following theorem:

Theorem. Katz-Rabinoff-Zureick-Brown (2016) Let C be any smooth
curve of genus g and let r = rank(JC). Suppose that r ≤ g − 3. Then,

#C(Q) ≤ 84g2 − 98g + 28

We can see that this theorem provides an upper bound on the number
of rational points that is solely dependent on the genus of a curve, thus
supporting the Uniformity Conjecture. Furthermore, it is important to note
that this theorem does not apply to genus 2 curves because we require r to
be greater than or equal to 0 and r ≤ g − 3. The main motivation for us
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to look at curves of genus 2 is that no such bound has been discovered for
such curves yet. Additionally, we wanted to see if we could come up with
new results using Michael Stoll’s algorithm for computing rational points on
hyperelliptic curves.

2.2 Computational

2.2.1 Michael Stoll’s Algorithm for Finding Rational Points on
Hyperelliptic Curves

We imported Michael Stoll’s C program into CoCalc and added Sage scripts
so that we could input curves that are not in a standardized form. Us-
ing CoCalc also allows us to parallelize our code such that we can compute
the rational points for multiple curves simultaneously. For a little bit of
background, Michael Stoll’s C program uses an optimized quadratic siev-
ing algorithm to find rational points. The current record for the curve
with the highest number of rational points, totalling 642, was found in a
systematic search using this algorithm. (CITE: http://www.mathe2.uni-
bayreuth.de/stoll/recordcurve.html)

2.3 Results

2.3.1 L-Functions and Modular Forms Database (LMFDB)

After implementing the algorithm in sage and ensuring it worked for a select
number of test cases, we moved toward testing a much larger number of hy-
perelliptic curves. The L-Functions and Modular Forms Database (LMFDB)
is an online database of mathematical objects that appear primarily in num-
ber theory. This database maintains a list of genus 2 plane curves, along
with data surrounding their rank, number of rational points, and whether
the number of rational points found has been verified or not. If the set of
rational points associated to curves is verified then that set contains every
rational point. Unverified curves may or may not have undiscovered points.
We used the data from the LMFDB in order to calculate rational points using
the given curves.
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2.3.2 Our Results

We ended up with some fascinating and exciting results. In the case of
LMFDB curves with verified points, we were able to corroborate these points,
since our algorithm found all the same ones. For unverified points, we ended
up finding more rational points than were listed in the database. The follow-
ing figures show the difference in the spread of calculated data between our
calculated points and those on the LMFDB:

Figure 3: Points calculated by the LMFDB. The x-axis represents number
of rational points and y-axis is frequency.

Figure 4: Points calculated by our implementation. The x-axis represents
number of rational points and y-axis is frequency.
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3 Future directions

We aim to continue collecting significant data for curves of genus ≥ 2.

We also plan to further study the Mathematics behind properties of these
curves, specifically with regards to the Jacobian and its rank.
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