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UQ motivation

Numerical simulation of a physical (or other) process
typically gives one solution.

But there are often many sources of uncertainty:

• Unknown physical parameters or data,
• Epistemic uncertainty: There is a true value but we can’t

measure it exactly. May only have upper and lower bounds.
• Aleatoric uncertainty: Not a single set of data of interest.

Instead a known or estimated probability distribution.

• The mathematical equations are only a model of reality,

• The numerical solution does not exactly solve the model
equations.

Related themes: Sensitivity analysis, A posteriori error
estimation, Estimation of reliability.
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Tsunamis caused by subduction zone earthquakes

• Small amplitude in ocean (< 1 meter) but can grow to
10s of meters at shore.

• Run-up along shore can inundate 100s of meters inland

• Long wavelength (as much as 200 km)

• Propagation speed
√
gh (much slower near shore)

• Average depth of Pacific or Indian Ocean is 4000 m
=⇒ average speed 200 m/s ≈ 450 mph
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27 February 2010 tsunami
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Inundation of Hilo, Hawaii

Using 5 levels of refinement with ratios 8, 4, 16, 32.

Resolution ≈ 160 km on Level 1 and ≈ 10m on Level 5.

Total refinement factor: 214 = 16, 384 in each direction.

With 15 m displacement at fault:

With 90 m displacement at fault:
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UQ techniques

Some possibilities, adapted from Tim Barth’s slides,
www.stanford.edu/group/cits/workshop/tutorials.html

Statistical methods:
• Monte Carlo simulation,
• Stratified sampling,
• Latin hypercube sampling,
• Response surface method,
• Multi-level Monte Carlo (MLMC).

Recast as deterministic equation for probability distribution:
• Perturbation expansion of random fields,
• Stochastic operator expansions,
• (Generalized) Polynomial Chaos,
• Adjoint equations.
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ODE model problem

Solve u′(t) = −u(t) for u(T ) given u(0) = η.

Exact solution: u(t) = e−T η.

Suppose η is a random variable, uniformly distributed in [η1, η2].

What is probability distribution of u(T )?

Answer: uniformly distributed in interval [e−T η1, e
−T η2].
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ODE model problem

u′(t) = −u(t) for u(T ) given u(0) = η =⇒ u(t) = e−T η.

η is a random variable, uniformly distributed in [−0.2, 0.8].

Equally spaced values of η give equally spaced trajectories!
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ODE model problem

u′(t) = −u(t) for u(T ) given u(0) = η =⇒ u(t) = e−T η.

Probability density function fT (v):

P [u1 < u(T ) < u2] =
∫ u2

u1

fT (v) dv

Initial uniform distribution in [η1, η2]:

f0(v) =
{

1/(η2 − η1) if η1 < v < η2,
0 otherwise

.
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ODE model problem

To compute fT (v):

P [u1 < u(T ) < u2] = P [eTu1 < η < eTu2]∫ u2

u1

fT (v) dv =
∫ eT u2

eT u1

f0(v) dv

If f0(v) = 1/(η2 − η1) is constant in the interval then RHS
reduces to eT (u2 − u1)/(η2 − η1), so

fT (v) =
{
eT /(η2 − η1) if eT η1 < v < eT η2,
0 otherwise

.

At t = 0, 0.5, 1:
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ODE model problem II

Solve u′(t) = u(t)(u(t)− 0.4)(1− u(t)) for u(T ) given u(0) = η.

Unstable fixed point at u = 0.4.

All solutions converge towards one of the
Stable fixed points at u = 0, 1,
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ODE model problem II

Solve u′(t) = u(t)(u(t)− 0.4)(1− u(t)) for u(T ) given u(0) = η.

Again assume η uniformly distributed in [η1, η2].

η1 = 0.2, η2 = 0.6: Density at t = 0, 4, 8:
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