Uncertainty Quantification and Its Application in Energy
and Environmental related complex systems
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Stochastic Gene Expression in a Single Cell
Eblowitz et al., Science, 2002

Bacterial cells expressing two different
fluorescent proteins (red and green) from
identical promoters.

Because of stochasticity (noise) in the
process of gene expression, even two
nearly identical genes often produce unequal amounts of protein.

The resulting color variation shows how noise fundamentally limits
the accuracy of gene regulation.



Excerpts from published emails in connection with shuttle Columbia’s last mission:
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Need For:
ochastic Simulations



Objective of Uncertainty Quantification

» Introduce error bars into numerical simulations.

» Understand the propagation of uncertainty in a dynamical
system.
» Assessment of the stochastic response.
m Desired statistics.
m Reliability analysis.
m Sensitivity analysis.

o
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Motivation of Uncertainty Quantification

 However, there are many cases where model

inputs are subject to uncertainty with known probability distribution
Uncertainties without precise probability distributions, e.g.,

e In M&S, we use PDE-based models that are simulated via

approximate numerical methods

— “All models are wrong, but some are useful.” — G. Box
— Numerical errors due to the mesh, iterations, etc.

=7
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Uncertainty: A potential deficiency in any phase or activity
of a modeling process that is due to lack of knowledge.

Aleatory (irreducible) Uncertainty
Epistemic (reducible) Uncertainty

Error: A recognizable deficiency in any phase or activity
of modeling and simulation that is not due to lack of knowledge.

Sources of Uncertainty: Initial and Boundary Conditions,
Thermo-physical/Structural Properties, Geometric Roughness,

Interaction Forces, Background Noise, ...

Laboratories Pacific Northwest
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e Aleatory uncertainty — inherent variation in a quantity
— Given sufficient samples, it can be characterized with a
precise probability distribution
* Epistemic uncertainty — due to a lack of knowledge

— There is insufficient information to specify either a fixed
value or a probability distribution

— More difficult to treat mathematically
— Can be eliminated by adding sufficient information

>



* Characterized by precise PDF or CDF

* Aleatory uncertain model inputs must
be propagated through the model to
determine effects on a System
Response Quantities (SRQ)

* Pure aleatory uncertainty can be
propagated by:

— Sampling (MCS, LHS, etc.)
— Perturbation methods

— Polynomial chaos

— Stochastic collocation



Epistemic uncertainty — due to lack of knowledge
* Sometimes characterized as a probability distribution
representing the degree of belief

* Our position is that pure epistemic uncertainties should be

represented as intervals with no associated probability
distribution, e.g., x € [0.45, 0.55]
— If deterministic, the true value can be any value in the range
— No likelihood/belief that any value is more true than another
— Different than assuming all values are equally likely (uniform)

* Interval uncertainties can be propagated by:
— Sampling (MCS, LHS, etc.)
— Interval arithmetic (non-naive implementations)

— Optimization: given interval-valued inputs, find the min and max
output SRQ



In practice, uncertain inputs are
often a mixture of aleatory and
epistemic uncertainty (e.g.,
random variables w/ few samples)

* Can be characterized by imprecise
probability theory

— Probability Bounds Analysis (PBA)

— Evidence theory (Dempster-Shafer)



Validation Hierarchy for a Hypersonic Cruise Missile
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Uncertainty Quantification for Predictive

Modeling of Complex Systems

» Vision - Transform our ability to uncertainty quantification, model
verification, validation and calibration of complex systems

» Qutcomes - Provide fundamental understanding to enable

Safe and efficient Better prediction

remediation and of climate
CO2 : #| changes
sequestration

strategies

Better o
understand the Better prediction
ice sheet and control of

power system
stability and
reliability

dynamics and its
interaction with
climate




Why uncertainty and multiscaling?

» All physical systems have inherent associated randomness

» Uncertainties infroduced across various length scales have a
non-trivial interaction

Micro

» Imprecise boundary

» Use micro averaged cor\qmons ,

» Physical properties, models for | > TInitial perturbations
structure follow a resolving physical :
statistical scales

description \g/
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Schematic Diagram of UQ & Multi-scale Modeling
of Complex Heterogeneous Reaction System
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Fig.- 1 Multi-scale computational modeling: from intrinsic molecular reactivity to macroscopic /

catalytic kinetics in the reactor under operating reaction and flow conditions west
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Background: Model Validation Need and
Challenges

Actual COI Power
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Recorded system dynamics vs. simulation results:

California and Oregon Intertie (COI) real power flow during
the August 10, 1996 event (Kosterev et al.1999)
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Climate Model Calibration using Observation Data Sets

Total Precipitation in June 2007
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Uncertainty Quantification for Nuclear
Contaminant Flow and Transport
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UQ for CO2 Sequestration

Sequestration Awmospiric CO,
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Uncertainty Quantification

Primary System | Secondary System

Condenser structural:
Vessel: Alloy steel ons
Clad: 308, ss Water side; carbon steel

RPV
RPV: Alloy steel
RPV cladding:
308, 309 SS

Cantrol rod:

S5 clad B,C + SS poison
Core structurals: 304 SS
High strength: A 286, X 750,

Fuel cladding:
Zy-4, agvanced Zr alloys

Fuel: VO,

Heat Exchanger

L Core Internals IL Ex | Syst: and Balance of Plant ————

Heat Sink

Secondary
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Cold R
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What are Verification, Validation,
Uncertainty Quantification?
Verification: Are the requirements implemented correctly?
— Are we solving the equations correctly?
— Are we solving the equations to sufficient accuracy?

Validation: Are the requirements correct?
— Are we solving the right equations?

Uncertainty Quantification: The end-to-end study of the
reliability of scientific inferences.

— Uncertainty and error affect every scientific analysis or
prediction.  Collectively known as “VVUQ’

Pacific Northwest
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What Will VV UQ Do?

« Verification: Develop test problems, new methods, and software tools

- Validation: VVUQ will collect validation datasets and identify database
gaps as required by the born-assessed and licensing missions

« Calibration, SA, UQ: Develop and deploy new capabilities and software
tools for the NEAMS IPSCs

~7
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Total Prediction Uncertainty

Uncertainty Propagation

Verification

Modeling and Simulation

Deterministic
Inputs (D)

Aleatory
Inputs (A)

Epistemic
Inputs (E)

Simulation
Outcomes

Validation
Experimental
Outcomes

Experiment

Uncertainty
Propagation

J

Measured Inputs (A, E, D)
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“** Model Calibration

<+ Adjust the values of the model parameters to
reduce the uncertainties associated with
parameter specification, output measurement
error, etc.

»»Data assimilation

+ Use observed data for system state and output
variables to update the system state variables



Data Assimilation:
a. Kalman Filter, Kalman-Bucy filter

b. Nonlinear Kalman Filter: (Ensemble Kalman Filter, Extended Kalman
filter, Unscented Kalman filter)

c. Particle Filter (sequential Monte Carlo methods)
Model Calibration:
a. Least Squares Parameter Estimation

b. Bayesian Parameter Estimation

-
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“* A systematic adjustment of model parameters
*» Establishes predictive validity of a model
*+ Model outputs govern model inputs

When is Calibration Needed?

“* Whenever predictive validity of model is in question
** When data are inadequate to estimate model inputs

7

Pacific NorthWest
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Run Model

Adjust Inputs Assess Results

W

How do we perform model calibration?
<+ Obtain calibration data sets

< Select an optimization scheme

< Optimize selected model parameters \g/
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“*Monte Carlo Method
“+*Quasi-Monte Carlo Method
“*Multi-level Monte Carlo Method
“+Pdf Method

“*Moments Approach

“*Latin Hypercube Sampling
“»*Fuzzy Logic

“»Evidence Theory

“*»Generalized Polynomial Chaos

Special Techniques to achieve
fast convergence:

“Important Sampling Method

“»Variance Reduction Method

a. Intrusive Approach - Galerkin Projection Method

29

b. Non-intrusive Approach - Probabilistic Collocation Method



T(x.t:0) = 3T,(x.0® (&)

T(X, t: 6) - Random process

- (X, t) - Spatial/temporal dimension

" - Random dimension

Ti (X, t) - Deterministic coefficients

. \IJi (E(e)) - Generalized Polynomial Chaos

Classical polynomial chaos — Wiener 1938, Ghanem & Spanos 1991

30
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Xiu & Karniadakis, SIAM, J. Sci. Comp., vol. 24, 2002

T(x.t:0) = ST, (x.0)® (§()

J

Polynomials of random variable &(w)
Orthogonality : <(I)i(I)j> = <(I)12>‘5y
(F©)g(®) = [©)g@W(E)d (f(©)g(®) = 2 f(E)NgEIMMWE)

Weight function determines underlying random variable
(not necessarily Gaussian)

Complete basis from Askey scheme

Each set of basis converges in L? sense
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Lucor & Karniadakis, Generalized Polynomial Chaos and Random Oscillators

Int. J. Num. Meth. Eng., vol. 60, 2004

PDF Error Monte- GPC: Speed-Up
(mean) Carlo: M (P+1)
Gaussian 2% 350 56 6.25
0.8% 2,150 120 18
0.2% 33,200 220 151
Uniform 0.2% 13,000 10 13,000
0.018% 1,580,000 20 79,000
0.001% 610,000,000 | 35 17,430,000




= Continuous Cases:
* Hermite Polynomials
* Laguerre Polynomials

Gaussian Distribution
Gamma Distribution

(special case: exponential distribution)
- Jacobi Polynomials «—> Beta Distribution

» Legendre Polynomials

0351

02F

Gaussian distribution Gamma distribution
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= Discrete Cases :
* Charlier Polynomials «—— Poisson Distribution
* Krawtchouk Polynomials <«— Binomial Distribution
* Hahn Polynomials «—— Hypergeometric Distribution
* Meixner Polynomials «——— Pascal Distribution

0.25 T T T T T T T T 035 T T T T T T T
I 9=0.5N=10 [0 «=12,p=10, N=8

02

0 1 2 3 4 5 6 7 8 9 10

Poisson distribution Binomial distribution Hypergeometric distribution
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a-l1 o \B-1
PDF: ‘f(x)=X (=x) , o,p>0, O0=x=<1
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Exact PDF and PDF of 1st, 3rd, 5th-order Hermite-Chaos Expansions
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- Linf error :

dy

* EquaTion . - = _ky’ y‘t=0 — 5\]

dt
k is the decaying coefficient with given probability distribution.

» Chaos expansion :

y(x,1;0) = 2 yi(x, )W (E(D)), k()= 2 k, W, (E(0))

» Galerkin projection :

dy, 1 ii<\pilpjlpk>kiyj, k=0,1,2,..,P

* The Chaos will be chosen according to the distribution of k.

ychaos (t) - yexact (t)
yexact (t)




«dy/dt=-ky, yt=0)=1
- kis a Gaussian random variable :
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Solution of expansion modes
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Convergence w.r.t. expansion terms

* 4th-order Hermite-Chaos expansion
- Exponential convergence rate
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cdy/dt=-ky, yt=0)=1

- kis a Gamma random variable :
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* Exponential distribution: a =0
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Solution of expansion modes : . =0

Convergence w.r.t. expansion terms

* 4th-order Laguerre-Chaos expansion
- Exponential convergence rate




«dy/dt=-ky, yt=0)=1

- kis a Beta random variable :
1-x)*(1+x)" -
PDF: fk (X) = Sorprl 10°E —&— Jacobi-Chaos (a=0, f=0)
2 B(OL + 1, B + 1) F —B— Jacobi-Chaos [o=1, f=3)
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=10°k
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c | 107
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Stochastic Spectral Methods

Galerkin projection (GPC)
P

U(X,t,W) — Z uiwia
1=0

<L (X,t,G; f: uz"Uq;) Wk> = (fWg)
i=0

k=0,1,---,P:

Collocation projection (PCM)
<35(yk)>7k — 17 " '7M

{yk},];/le a set of collocation points on [, coincides
with quadrature rule

L(x,t,ygu) = f(x,1,y;)

Solve coupled system for coefficients.

Moment estimation through exploiting
orthogonality of basis.

References: e.g.
e Ghanem & Spanos, 91 * Deb, Babuska & Oden, 00
e Xiu & Karniadakis, 02 < Le Maitre et al, 04

* Schwab & Todor, 03 . \yan & Karniadakis, 05
e Matthies & Keese, 05

Solve M decoupled equations.

’lAL(.SC, ta y) — ch\/—rzl ’LL(ZL‘, ta yk)'gk (y)

Lagrange
interpolating
Moment estimation: Y polynomials
~D 2
Elu*|(x,t) = Zu (x,t, yr )wg
k=1

Tatang & McRae, 94; Isukapalli et al, OOM

Hesthaven, 05; Babuska et al R@sific Northwest
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Advantage of gPC

© Fast convergence due to spectral expansion.

& Efficiency due to orthogonality.

%+(1L°V)u =
V-u =

Kovasznay Flow:

> = <

T

1 — e cos 2y

A AT
ﬁe

Re Re? ‘
T — (T 4 4/

sin 27

random variable of Beta(1.1).

—Vp+rv(l+ 5£)V2u

0

—&—Mean of u
——gofu
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Limitations of gPC

& Tnefficient for problems with low regularity in the parametric space.

& May diverge for long-time integrations.

Kraichnan-Orszag three-mode model: 0.25 —— MC: 1,000,000
== GPC: p=30 , 4
/ 0.2 | -
dY-
T = YaYs
© 0.15
dYs _ ‘ 2
< dr Y1Y3 %
dys __ _ > 041
T2 = —2¥o)3
.. - 0.05f
| random 1intial conditions.
00
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> Advantages of gPC:
0 Fast convergence due to spectral expansion.

0 Efficiency due to orthogonality.

> Disadvantages of gPC:

Q Efficiency decreases as the number of random dimensions increases.
0 Inefficient for problems with low regularity in the parameter space.

0 May diverge for long time integration.

7
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Stochastic Sensitivity Analysis

Motivation:

@ Rank all inputs and parameters in order of their significance
to output variation

® Reduce dimension of parametric space in experiments or
simulations

Sensitivity Algorithms:

® Approximated Gradient Method
Morris, QMC, MC, Multi-Element Sparse Collocation

N o ’J"j(x?»x?»--»x?_l-x? +A,xil,..,xi)—yj(x?,...,xs )’ Input Xi 1=1:d
(x5 x,) = A Output y, : j=1:n

Lin & Karniadakis, AIAA-2008-1073, 2008; IJNME 2009 Pacific Northwest
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» Forward Uncertainty Quantification can provide an
error bar to the model simulation results.

* Model calibration and data assimilation quantify
uncertainty and bridge the gap between Simulation-
Experiment.

» Data assimilation is a technique that is used to
correct the errors in state variables.

<+ Sensitivity analysis can reduce dimension of
parametric space in experiments or simulations

45



"...Because I had worked in the closest possible ways with

physicists and engineers, I knew that our data can never be precise...”

Norbert Wiener
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Questions



