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Stochastic Gene Expression in a Single Cell 
Eblowitz et al., Science, 2002 

Bacterial cells expressing two different 
fluorescent proteins (red and green) from  
identical promoters. 

Because of stochasticity (noise) in the 
process of gene expression, even two 
nearly identical genes often produce unequal amounts of protein. 

The resulting color variation shows how  noise fundamentally limits 
the accuracy of gene regulation.  



Excerpts from published emails in connection with shuttle Columbia’s last mission: 



Uncertainty in Equation of State: Teflon 

Turchi et al. 
AIAA 98-3807 

MACH2 RESULTS 

 Need For: 
Stochastic Simulations 



Objective of Uncertainty Quantification 

"   Introduce error bars into numerical simulations. 
"   Understand the propagation of uncertainty in a dynamical 

system. 
"   Assessment of the stochastic response. 

"   Desired statistics. 
"   Reliability analysis. 
"   Sensitivity analysis. 
"   ...... 
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Motivation of Uncertainty Quantification 

Modeling and Simulation (M&S) plays an important role 
in scientific and engineering predictions 

•  However, there are many cases where model 
inputs are subject to uncertainty with known probability distribution  
Uncertainties without precise probability distributions, e.g., 

•  In M&S, we use PDE-based models that are simulated via 

approximate numerical methods 

– “All models are wrong, but some are useful.” – G. Box 
– Numerical errors due to the mesh, iterations, etc. 

How can we estimate total prediction uncertainty in M&S? 



Uncertainty versus Error 

Uncertainty: A potential deficiency in any phase or activity 
of a modeling process that is due to lack of knowledge. 

Aleatory (irreducible) Uncertainty 
Epistemic (reducible) Uncertainty  

Error: A recognizable deficiency in any phase or activity 
of modeling and simulation that is not due to lack of knowledge. 

Sources of Uncertainty: Initial and Boundary Conditions,  
Thermo-physical/Structural Properties, Geometric Roughness, 
Interaction Forces, Background Noise, …  



Classification of uncertainties 
•  Aleatory uncertainty – inherent variation in a quantity 

 – Given sufficient samples, it can be characterized with a 
precise probability distribution 

•  Epistemic uncertainty – due to a lack of knowledge 
 – There is insufficient information to specify either a fixed 

value or a probability distribution 
– More difficult to treat mathematically 
– Can be eliminated by adding sufficient information 

Uncertainties can be aleatory, epistemic, or a mixture 
of the two 

Types of Uncertainty 



– 
– 
– 
– 

Sampling (MCS, LHS, etc.) 
Perturbation methods 
Polynomial chaos 
Stochastic collocation 

   Characterization and 
  Propagation of Aleatory Uncertainty 

Aleatory (stochastic) uncertainty 
•  Characterized by precise PDF or CDF 
•  Aleatory uncertain model inputs must 

 be propagated through the model to 
 determine effects on a System 
 Response Quantities (SRQ) 

•  Pure aleatory uncertainty can be 
 propagated by: 



Epistemic uncertainty – due to lack of knowledge 
•  Sometimes characterized as a probability distribution 

representing the degree of belief 
•  Our position is that pure epistemic uncertainties should be 

represented as intervals with no associated probability 
distribution, e.g., x ∈ [0.45, 0.55] 
–  If deterministic, the true value can be any value in the range 
–  No likelihood/belief that any value is more true than another 
–  Different than assuming all values are equally likely (uniform) 

•  Interval uncertainties can be propagated by: 
–  Sampling (MCS, LHS, etc.) 
–  Interval arithmetic (non-naïve implementations) 
–  Optimization: given interval-valued inputs, find the min and max 

output SRQ 

Characterization and 
Propagation of Epistemic Uncertainty 
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    Characterization of Mixed 
   Aleatory and Epistemic Uncertainty 

In practice, uncertain inputs are 
 often a mixture of aleatory and 
 epistemic uncertainty (e.g., 
 random variables w/ few samples) 

•  Can be characterized by imprecise 
 probability theory 
  –  Probability Bounds Analysis (PBA) 
  –  Evidence theory (Dempster-Shafer) 



Validation Hierarchy for a Hypersonic Cruise Missile 



Uncertainty Quantification for Predictive 
Modeling of Complex Systems 
"   Vision - Transform our ability to uncertainty quantification, model 

verification, validation and calibration of complex systems 
"   Outcomes - Provide fundamental understanding to enable 
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Safe and efficient 
remediation and 
CO2 
sequestration 
strategies 

Better prediction 
of climate 
changes   

Better 
understand the 
ice sheet 
dynamics and its 
interaction with 
climate 

Better prediction 
and control of 
power system 
stability and 
reliability   



Why uncertainty and multiscaling? 

"   All physical systems have inherent associated randomness 
"   Uncertainties introduced across various length scales have a 

non-trivial interaction 

Micro Meso Macro 

"   Physical properties, 
structure follow a 
statistical 
description 

"   Use micro averaged 
models for 
resolving physical 
scales 

"   Imprecise boundary 
conditions  

"   Initial perturbations 



Schematic Diagram of UQ & Multi-scale Modeling 
of Complex Heterogeneous Reaction System 



Background: Model Validation Need and 
Challenges 

Recorded system dynamics vs. simulation results: 
California and Oregon Intertie (COI) real power flow during 
the August 10, 1996 event (Kosterev et al.1999)  



Climate Model Calibration using Observation Data Sets 



Uncertainty Quantification for Nuclear 
Contaminant Flow and Transport 



UQ for CO2 Sequestration 

scCO2 
Saturation 



Uncertainty Quantification 



What are Verification, Validation, 
Uncertainty Quantification? 

•  Verification: Are the requirements implemented correctly? 
–  Are we solving the equations correctly? 
–  Are we solving the equations to sufficient accuracy? 

•  Validation: Are the requirements correct? 
–  Are we solving the right equations? 

•  Uncertainty Quantification: The end-to-end study of the 
reliability of scientific inferences. 
–  Uncertainty and error affect every scientific analysis or 

prediction. Collectively known as “VVUQ” 



What Will VV UQ Do? 

•   Verification: Develop test problems, new methods, and software tools 

•   Validation: VVUQ will collect validation datasets and identify database 
gaps as required by the born-assessed and licensing missions 

•   Calibration, SA, UQ: Develop and deploy new capabilities and software 
tools for the NEAMS IPSCs 
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Two Approach to Achieve the Best Prediction: 

 Model Calibration 
 Adjust the values of the model parameters to 

reduce the uncertainties associated with 
parameter specification, output measurement 
error, etc. 

 Data assimilation 
 Use observed data for system state and output 

variables to update the system state variables 



Data Assimilation & Model Calibration 

Data Assimilation:  

a. Kalman Filter, Kalman–Bucy filter 

b. Nonlinear Kalman Filter: (Ensemble Kalman Filter, Extended Kalman 
filter, Unscented Kalman filter) 

c. Particle Filter (sequential Monte Carlo methods) 

Model Calibration: 

a. Least Squares Parameter Estimation 

b. Bayesian Parameter Estimation 



What is Calibration? 

 A systematic adjustment of model parameters 
 Establishes predictive validity of a model 
 Model outputs govern model inputs 
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When is Calibration Needed? 

 Whenever predictive validity of model is in question 
 When data are inadequate to estimate model inputs 



Calibration Cycle 

How do we perform model calibration? 
  Obtain calibration data sets 
  Select an optimization scheme 
  Optimize selected model parameters 
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Methods for Uncertainty Quantification 
 Monte Carlo Method 

 Quasi-Monte Carlo Method 

 Multi-level Monte Carlo Method 

 Pdf Method 

 Moments Approach 

 Latin Hypercube Sampling 

 Fuzzy Logic 

 Evidence Theory 

 Generalized Polynomial Chaos 

    a. Intrusive Approach – Galerkin Projection Method 

    b. Non-intrusive Approach – Probabilistic Collocation Method 

Special Techniques to achieve 
fast convergence: 

 Important Sampling Method 

 Variance Reduction Method 
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Representation of a Random Process 

- Random process 

- Spatial/temporal dimension 

- Random dimension 

- Deterministic coefficients 

- Generalized Polynomial Chaos 

•   

   

   

•   

•   

 Classical polynomial chaos – Wiener 1938, Ghanem & Spanos 1991 
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Generalized Polynomial Chaos (gPC) 
Xiu & Karniadakis, SIAM, J. Sci. Comp., vol. 24, 2002  

 Orthogonality : 

 Weight function determines underlying random variable 
   (not necessarily Gaussian) 

 Complete basis from Askey scheme 

 Polynomials of random variable 

 Each set of basis converges in L2 sense 



32 

PDF Error 
(mean) 

Monte-
Carlo: M 

GPC: 
(P+1) 

Speed-Up 

Gaussian 2% 
0.8% 
0.2% 

350 
2,150 
33,200 

56 
120 
220 

6.25 
18 
151 

Uniform 0.2% 
0.018% 
0.001% 

13,000 
1,580,000 
610,000,000 

10 
20 
35 

13,000 
79,000 
17,430,000 

Computational Speed-Up 

Lucor & Karniadakis, Generalized Polynomial Chaos and Random Oscillators  
Int. J. Num. Meth. Eng., vol. 60, 2004 
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Orthogonal Polynomials and Probability Distributions 

  Continuous Cases: 
•  Hermite Polynomials                     Gaussian Distribution 
•  Laguerre Polynomials                    Gamma Distribution 
                                               (special case: exponential distribution) 
•  Jacobi Polynomials                       Beta Distribution 
•  Legendre Polynomials                  Uniform Distribution 

Gaussian distribution Gamma distribution Beta distribution 
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Orthogonal Polynomials and Probability Distributions 

  Discrete Cases : 
•  Charlier Polynomials                  Poisson Distribution 
•  Krawtchouk Polynomials            Binomial Distribution 
•  Hahn Polynomials                     Hypergeometric Distribution 
•  Meixner Polynomials                Pascal Distribution 

Poisson distribution Binomial distribution Hypergeometric distribution 
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Hermite-Chaos Expansion of Beta Distribution 

Uniform distribution : 

Exact PDF and PDF of 1st, 3rd, 5th-order Hermite-Chaos Expansions 
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Applications : ODE with Uncertain Coefficient 

k is the decaying coefficient with given probability distribution. 

•  Equation : 

•  Chaos expansion : 

•  Galerkin projection : 

•  The Chaos will be chosen according to the distribution of k. 

•  Linf error : 
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Continuous Distribution : Gaussian (Hermite-Chaos) 

•  dy/dt = - k y,  y(t=0)=1 

•  k is a Gaussian random variable : 

Solution of expansion modes 

Convergence w.r.t. expansion terms 

•  4th-order Hermite-Chaos expansion 
•  Exponential convergence rate 
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Continuous Distribution : Gamma (Laguerre-Chaos) 

•  dy/dt = - k y,  y(t=0)=1 

•  k is a Gamma random variable : 

Convergence w.r.t. expansion terms 

•  4th-order Laguerre-Chaos expansion 
•  Exponential convergence rate 

•  Exponential distribution : 

Solution of expansion modes : 
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Continuous Distribution : Beta (Jacobi-Chaos) 

•  dy/dt = - k y,  y(t=0)=1 

•  k is a Beta random variable : 

Convergence w.r.t. expansion terms 

•  4th-order Jacobi-Chaos expansion 

•  Exponential convergence rate 

•  Uniform distribution : 

Solution of expansion modes : 



Stochastic Spectral Methods 

 Galerkin projection (GPC) 

Solve coupled system for coefficients. 

Moment estimation through exploiting 
orthogonality of basis. 

Collocation projection (PCM) 

Solve M decoupled equations. 

Lagrange 
interpolating 
polynomials Moment estimation: 

a	
  set	
  of	
  colloca+on	
  points	
  on	
  	
  	
  	
  	
  ,	
  coincides	
  
with	
  quadrature	
  rule	
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Advantage of gPC 
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Limitations of gPC 
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Comments on Polynomial Chaos 

  Advantages of gPC: 

  Fast convergence due to spectral expansion. 

  Efficiency due to orthogonality. 

  Disadvantages of gPC: 

  Efficiency decreases as the number of random dimensions increases. 

  Inefficient for problems with low regularity in the parameter space. 

  May diverge for long time integration. 
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Stochastic Sensitivity Analysis 

Motivation: 
Rank all inputs and parameters in order of their significance 

to output variation 
Reduce dimension of parametric space in experiments or 

simulations 

Sensitivity Algorithms: 
Approximated Gradient Method 

Morris, QMC, MC, Multi-Element Sparse Collocation 

Lin & Karniadakis, AIAA-2008-1073, 2008; IJNME 2009 
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Summary 

 Forward Uncertainty Quantification can provide an 
error bar to the model simulation results. 

 Model calibration and data assimilation quantify 
uncertainty and bridge the gap between Simulation-
Experiment. 

 Data assimilation is a technique that is used to 
correct the errors in state variables. 

 Sensitivity analysis can reduce dimension of 
parametric space in experiments or simulations 
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“…Because I had worked in the closest possible ways with 

 physicists and engineers, I knew that our data can never be precise…” 

Norbert Wiener 

Uncertainty Quantification and Its Application in  
Energy and Environmental related complex systems  
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Questions? 


