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Our Measurements of M(4He)

• Motivation:

–
4He can be used as a reference ion.

– The α-particle’s mass is considered a fundamental constant.

• Results: (16 ppt precision)

– M(4He) = 4, 002, 603, 254.153(64) nu

– Mα = 4, 001, 506, 179.147(64) nu

– This agrees with the two most accurate previous

measurements at the 2σ level, but should be ∼ 20 times

more accurate.

2



Outline of Talk

Penning Trap
Particle Trajectory

1. Introduction to our Penning traps

2. Recent improvements to the apparatus

3. Our new measurements of M(4He)

4. Work in progress
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Introduction to our Penning Traps
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• Particle Dynamics—Confinement

– Magnetic and electric fields:

∗ Hyperbolic electrodes give

harmonic oscillator potential.
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· d = 2.11 mm

· V ≈ V0
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2d2 (Electrostatic potential)

· V0 ∼ 50V

∗ Superconducting solenoid gives uniform B-field

· B ≈ (6.0 T) ẑ

4



Introduction to our Penning Traps

• Ion mass ratio measurements are based on the equation:

ωc ≡

qB

m

• Ion-cyclotron excitation causes a shift in the ion’s axial

frequency:
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or, δωz

ωz

= [ ( quadrupole B-field term )

+ ( special relativity term )

+ ( anharmonic E-field term ) ] (cyc. energy)

( This is how we detect the cyclotron resonance. )

5



Introduction to the Apparatus

Penning Trap Mass Spectrometer

Penning Trap

Support Structure

Cryogenic Pre-Amplifier

Liquid Helium

Superconducting 

    6 T   Magnet

Field Emission Point

Vacuum-Pump
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Electronics

Racks
Magnet Header
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• Penning trap in

vacuum at T = 4K

• Neutral gas desorbed

from cryogenic surfaces

• Field emission point

for ionization

• Ultra-stable

magnet/cryostat system

• Electronic circuits for drive

and detection of ion motion
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Recent Improvements to the Apparatus

• New frequency standard:

A GPS-disciplined rubidium standard has

replaced our free-running quartz crystal.

• We have improved procedures for

eliminating contamination ions.

• The superconducting magnet’s

stability is improving with time.

• Sources of uncertainty are becoming

better understood.
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Our Measurements of M(4He)
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Our Measurements of M(4He)
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Our Measurements of M(4He)
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Our Measurements of M(4He)

Error Budget

• An uncertainty of 13.4 ppt (1σ) could be reduced through

repeated measurements:

– This gives the conservative χ2 = 0.41, when all data is

included.

– The scatter of points within each data-run contributes

10.3 ppt.

– Uncertainties on corrections for systematic shifts

contributes the other 8.3 ppt.

• Uncertainty from the image-charge shift correction is 9 ppt.

(This correction comes from a separate measurement.)

• Adding the missing electron masses and their binding energies

introduced negligible uncertainty.

• Thus 16 ppt is the stated accuracy of the measurement.
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Recent Measurements of M(4He)
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Phys. Rev. Lett.
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Conclusion

Work on light ions continues:

•
2H atomic mass data awaits analysis

•
3He atomic mass data-taking in progress

• New apparatus under construction for
3H atomic mass measurement

– External ion source

– Double Penning trap
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Superconducting Magnet and Cryostat

• Active and passive

shielding reduces the

ambient magnetic field

noise by a factor of 104.

• Overall temporal

B-field stability is

currently ∼ 1 part

in 1012 per hour.
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