A More Precise Atomic Mass of ⁴He Ongoing Reduction of Uncertainties

for the University of Washington Penning Trap Mass Spectrometer (UW-PTMS)

DAMOP 2004 Oral Session

David Pinegar, Steven Zafonte, Seth Van Liew Robert Van Dyck, Jr.,

May 29, 2004

Our Measurements of $M(^{4}\text{He})$

- Motivation:
 - ⁴He can be used as a reference ion.
 - The α -particle's mass is considered a fundamental constant.
- Results: (16 ppt precision)
 - $M(^{4}He) = 4,002,603,254.153(64)$ nu
 - ${\rm M}_{\alpha}=4,001,506,179.147(64)$ nu
 - This agrees with the two most accurate previous measurements at the 2σ level, but should be ~ 20 times more accurate.

Outline of Talk

- 1. Introduction to our Penning traps
- 2. Recent improvements to the apparatus
- 3. Our new measurements of $M(^{4}\text{He})$
- 4. Work in progress

Introduction to our Penning Traps

* Hyperbolic electrodes give harmonic oscillator potential.

 $\cdot d^2 \equiv \frac{1}{2}(z_0^2 + \rho_0^2/2)$

(Trap length scale)

·
$$d = 2.11 \,\mathrm{mm}$$

· $V \approx V_0 \frac{z^2 - \rho^2/2}{2d^2}$ (Electrostatic potential)
· $V_0 \sim 50 \,\mathrm{V}$

* Superconducting solenoid gives uniform B-field

$$\cdot \mathbf{B} \approx (6.0 \,\mathrm{T}) \,\mathbf{\hat{z}}$$

Introduction to our Penning Traps

• Ion mass ratio measurements are based on the equation:

$$\omega_c \equiv \frac{qB}{m}$$

• Ion-cyclotron excitation causes a shift in the ion's axial frequency:

$$\frac{\delta\omega_z}{\omega_z} = \left[\frac{B_2}{m\omega_z^2 B_0} - \frac{1}{2mc^2} - \frac{3C_4}{qV_0} \left(\frac{\omega_z}{\omega_c'}\right)^2\right] E_c$$
or, $\frac{\delta\omega_z}{\omega_z} = \left[\text{ (quadrupole B-field term)} + \text{ (special relativity term)} + \text{ (anharmonic E-field term)} \right] (cyc. energy)$

(This is how we detect the cyclotron resonance.)

Introduction to the Apparatus

Penning Trap Mass Spectrometer

- Penning trap in vacuum at T = 4K
- Neutral gas desorbed from cryogenic surfaces
- Field emission point for ionization
- Ultra-stable magnet/cryostat system
- Electronic circuits for drive and detection of ion motion

Recent Improvements to the Apparatus

- New frequency standard:
 - A GPS-disciplined rubidium standard has replaced our free-running quartz crystal.
- We have improved procedures for eliminating contamination ions.
- The superconducting magnet's stability is improving with time.
- Sources of uncertainty are becoming better understood.

Our Measurements of $M({}^{4}\mathrm{He})$

cyc. drive freq. - 45,293,460.00 Hz

Our Measurements of $M({}^{4}\mathrm{He})$

Our Measurements of $M({}^{4}\mathrm{He})$

Our Measurements of $M({}^{4}\text{He})$

Error Budget

- An uncertainty of $13.4 \text{ ppt} (1\sigma)$ could be reduced through repeated measurements:
 - This gives the conservative $\chi^2 = 0.41$, when all data is included.
 - The scatter of points within each data-run contributes 10.3 ppt.
 - Uncertainties on corrections for systematic shifts contributes the other 8.3 ppt.
- Uncertainty from the image-charge shift correction is 9 ppt. (This correction comes from a separate measurement.)
- Adding the missing electron masses and their binding energies introduced negligible uncertainty.
- Thus 16 ppt is the stated accuracy of the measurement.

Recent Measurements of $M(^{4}\text{He})$

Year of Publication

Conclusion

Work on light ions continues:

- ^{2}H atomic mass data awaits analysis
- ³He atomic mass data-taking in progress
- New apparatus under construction for ${}^{3}H$ atomic mass measurement
 - External ion source
 - Double Penning trap

Superconducting Magnet and Cryostat

- Active and passive shielding reduces the ambient magnetic field noise by a factor of 10⁴
- Overall temporal B-field stability is currently ~ 1 part in 10^{12} per hour.

Electronics Overview: Drive and Detection

Ion Cyclotron Excitation is Detected bacause it Shifts to the Ion's Axial Frequency

