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Our Measurements of M (*He)

e Motivation:
— 4He can be used as a reference ion.

— The a-particle’s mass is considered a fundamental constant.

e Results: (16 ppt precision)
— M(*He) = 4,002, 603, 254.153(64) nu
— M, = 4,001,506, 179.147(64) nu

— This agrees with the two most accurate previous
measurements at the 2o level, but should be ~ 20 times

more accurate.
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Introduction to our Penning Traps

Endcaps: 2° = 25 + p?/2

; \__/

Ring: 2* = 5(p* — pp) .

T
0
— Magnetic and electric fields:

* Hyperbolic electrodes give /—\

harmonic oscillator potential.

e Particle Dynamics—Confinement

- d? = 2(23 +p3/2) (Trap length scale)

- d=2.11mm

-V a1 225522/2 (Electrostatic potential)
- Vo ~50V

x Superconducting solenoid gives uniform B-field
- B~ (6.0T)z



Introduction to our Penning Traps

e Jon mass ratio measurements are based on the equation:

qB
W, = —
m

e Jon-cyclotron excitation causes a shift in the ion’s axial

frequency:
dw, B> 1 30y (ws\’ o
w, |mw?By 2mc2  qVh \w. ©
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or, == [ ( quadrupole B-field term )

+ ( special relativity term )
+ ( anharmonic E-field term ) ] (cyc. energy)

( This is how we detect the cyclotron resonance. )



Introduction to the Apparatus

Penning Trap Mass Spectrometer

Electronics Magnet Header
Racks

Penning trap in
Support Structure

vacuum at 7' = 4K o /
Neutral d bed iqui '
eutral gas desorbe - / Liquid Helium

from cryogenic surfaces
Superconducting

/ 6T Magnet

| Vacuum-Pump

Field emission point

for ionization

Tm
Ultra-stable

Penning Trap
magnet /cryostat system

\ o o o .
Electronic circuits for drive Field Emission Point

and detection of ion motion w " Cryogenic Pre-Amplifier

—»| 10cm |[&—




Recent Improvements to the Apparatus

e New frequency standard:
A GPS-disciplined rubidium standard has
replaced our free-running quartz crystal.

e We have improved procedures for

eliminating contamination ions.

e The superconducting magnet’s
stability is improving with time.

e Sources of uncertainty are becoming

better understood.



axial frequency shift

Our Measurements of M (‘He)

(1) carbon 6+
7/19/02 |

4.53 4.54 4.55 4.56

cyc. drive freq. - 45,293,460.00 Hz



cyclotron frequency residuals (Hz)

Our Measurements of M (‘He)
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Our Measurements of M (*He)
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Our Measurements of M (*He)

Error Budget
e An uncertainty of 13.4ppt (1lo) could be reduced through

repeated measurements:

— This gives the conservative xy? = 0.41, when all data is
included.

— The scatter of points within each data-run contributes
10.3 ppt.

— Uncertainties on corrections for systematic shifts
contributes the other 8.3 ppt.

e Uncertainty from the image-charge shift correction is 9 ppt.

(This correction comes from a separate measurement.)

e Adding the missing electron masses and their binding energies

introduced negligible uncertainty.

e Thus 16 ppt is the stated accuracy of the measurement.
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Recent Measurements of M (*He)

Atomic Mass - 4 002 603 200 nu
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Conclusion

Work on light ions continues:

e °H atomic mass data awaits analysis
e 3He atomic mass data-taking in progress

e New apparatus under construction for
3H atomic mass measurement

— External ion source

— Double Penning trap
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Superconducting Magnet and Cryostat
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Electronics Overview: Drive and Detection

lon Cyclotron Excitation is Detected bacause it Shifts to the lon's Axial Frequency
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