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This paper presents the formulation of a constrained 6-degree-of-freedom (6-DoF) pow-
ered descent guidance problem. The goal of this work is to design algorithms that obtain
locally optimal solutions to such problems, and that are amenable to real-time implemen-
tation. Using unit dual quaternions to parameterize the equations of motion, we devise
a free final time continuous optimal control problem that is subject to state and control
constraints. A novel feature of this formulation is the use of state-triggered constraints,
which are constraints enforced only when a certain state-dependent criterion is met. We
use these constraints to model a line of sight pointing constraint that is enforced condition-
ally based on the distance from the landing site. A numerical example highlights how the
inclusion of this constraint alters control commands and the resulting descent trajectory.

I. Introduction

Powered descent guidance refers the problem of transferring a vehicle from an estimated initial state to a
desired final state by using rocket-powered engines and/or reaction control systems. The problem of optimal
powered descent has been well studied since the Apollo program sought to achieve soft-landings on the
moon.1–3 The first tractable solutions adequate for flight operations, however, were limited to one-degree-
of-freedom (1-DoF) systems for purely vertical descent trajectories.1 The structure of optimal solutions for
the more general 3-DoF translational guidance problem has been understood since the work of Lawden,2,4

but numerical solutions were difficult to obtain at the time. While optimal guidance was not incorporated
in the Apollo flight code, there is evidence that the system designers were aware of how their polynomial
guidance scheme stacked up relative to the optimal solution.5

Near the turn of the century, there was renewed interest in optimal powered descent guidance problems
due primarily to robotic Martian landing missions. These works expanded on previous theory in seek of
analytical solutions to the 3-DoF problem. D’Souza studied the free final time, minimum energy solutions
and obtained an analytical feedback control law as a function of the time-to-go.6 Topcu, Casoliva and Mease
presented further results on the minimum fuel problem and compared theoretical predictions against rapidly
maturing numerical solvers.7,8 Several other authors continued to study the necessary conditions of the
minimum fuel 3-DoF guidance problem using optimal control theory.9–11

At the same time, Açıkmeşe and Ploen published work with an alternative viewpoint on the 3-DoF prob-
lem.12–14 They took a convex programming approach, and showed that a non-convex (non-zero) lower bound
on thrust magnitude can be relaxed by introducing a slack variable.14 Using Pontryagin’s maximum princi-
ple, they showed that in fact this relaxation is lossless, and yields the same optimal solution as the original
problem. A subsequent change of variables and relaxation led to a fully convex problem formulation that
can be solved efficiently. This lossless convexification result began a fruitful series of work that expanded the

∗Doctoral Student, AIAA Student Member {tpr6,szmuk,danylo}@uw.edu
†Professor, AIAA Associate Fellow, {mesbahi,behcet}@uw.edu
‡SPLICE Project Manager, AIAA Associate Fellow, john.m.carson@nasa.gov

1 of 16

American Institute of Aeronautics and Astronautics



theory to non-convex thrust pointing constraints,15–17 minimum-landing error problems18 and more general
optimal control problems.19–21 Interior time state and control constraints can render the solution of the nec-
essary conditions of optimal control theory a difficult proposition; but convex optimization does not suffer
from such issues provided the constraints are convex. Fortunately, a majority of the constraints of interest
in the powered descent guidance problem come in the form of second-order cones, a class of convex sets that
we exploit in this work.
More recent work has explored extensions to the 6-DoF problem that considers both translational and
rotational motion. These include the use of Lyapunov techniques,22 model predictive control23,24 and feed-
forward trajectory generation techniques.25–28 The latter techniques devise iterative strategies that are used
to obtain feasible solutions to nonlinear and nonconvex optimal control problems that approximate local
optimality. A complete characterization of fuel optimal solution(s) for the 6-DoF problem is an active area
of research. However, numerical techniques offer promising results that locally optimal solutions can be
found by sequentially solving convex optimization problems with guaranteed convergence properties.29–31

The state variables selected for the 6-DoF problem formulation can be used to classify various methods.
For example, one may use standard Cartesian variables in conjunction with unit quaternions25–27 or dual
quaternions.22–24,32,33 This distinction should be viewed as a design choice during guidance system design.
We find that when there are constraints that naturally couple rotation and translation (such as line of sight
constraints), parameterizations using dual quaternions provide an efficient alternative. In this work, we elect
to parameterize the equations of motion and state constraints using dual quaternions.
Dual quaternions are a generalization of Hamilton’s quaternions that encode both relative orientation and
position information in a single parameter.34 An attractive feature of this parameterization is that the
equations of motion can be expressed in a form similar to the standard quaternion kinematic and dynamic
equations. Moreover, the formulation of several key constraints – including line of sight – are convex over a
given set of dual quaternions.24,35

A. Contributions of This Work

The Apollo guidance system designated three powered descent phases: the braking phase, the approach phase
and the terminal-descent phase.5 The braking phase slowed the vehicle from orbital speeds by thrusting
primarily in the anti-velocity direction. Prior to the approach phase, a pitch-up maneuver to a desired
attitude was executed to serve as an initial attitude for the approach phase. During the approach phase,
the lunar module maintained continuous visibility of the landing site until roughly 5 seconds before the
terminal-descent phase began. The attitude guidance system was designed to ensure a line of sight to the
landing site only when the geometry permitted .5 There was no a-priori guarantee that this would occur.
We consider a similar scenario whereby a landing vehicle must maintain a line of sight until a certain distance
from the landing site, and use the newly introduced state-triggered constraints to model this constraint.28

We note that time-based criteria can equivalently be used in our framework. This allows the vehicle to
be free of the line of sight constraint once it is sufficiently close to the landing site, while maintaining
a continuous optimization framework (i.e., we do not resort to binary or integer variables). As a result,
guidance trajectories can be designed with the line of sight explicitly enforced when it is required, and not
enforced when it is not required.
State-triggered constraints (STCs) model constraints that are enforced only if a criterion conditioned on the
state vector is met. While this work focuses in particular on a distance-triggered line of sight constraints,
previous work has shown their applicability to speed-versus-angle-of-attack constraints for aerodynamic
descent maneuvers.28 Though not addressed here, state-triggered constraints can also be used to model
state-based keep-out zone constraints for autonomous collision avoidance maneuvers, and minimum (or
maximum) time-based constraints, among others. The continuous formulation of STCs offers a novel and
elegant way to incorporate such constraints without resorting to engineering heuristics or mixed-integer
programming. The resulting continuous optimal control problems are nonconvex; however we find that they
can be readily solved using a successive convexification procedure. In this work, we use such a procedure to
obtain feed-forward guidance solutions.
This paper is organized as follows. First, §II introduces our notation and description of 6-DoF motion using
dual quaternions. Next, §III details the state and control constraints as a function of the dual quaternion
and concludes with a statement of the problem that is solved. The solution method used in this work is
briefly discussed in §IV. Lastly, §V provides a numerical example that highlights the distance-triggered line
of sight constraint for a lunar landing scenario.
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B. Notation

We denote the set of real numbers using R, and use R+ and R++ to denote non-negative and positive real
numbers, respectively. We use 0n×m to denote a matrix of size n ×m whose entries are all zero, and In to
denote the n × n identity matrix. We use spec {·} to denote the set of eigenvalues of a matrix and denote
a symmetric positive semi-definite matrix M using M ∈ Sn+ or M � 0. The skew symmetric cross product
operator is defined as ·× : R3 → R3×3 so that for any two vectors a, b ∈ R3 we have a× b = a×b.
Unit quaternions are used to parameterize the set of isometric transformations (rotation matrices) of the
Special Orthogonal group in 3-dimensions, SO(3). We use Q to denote the quaternion manifold, and a
general element q ∈ Q is composed of a vector part, qv, and a scalar part q0. We will write the set of
unit quaternions as Qu = {q | q · q = 1}, where · denotes the Euclidean scalar product. The set of unit
quaternions Qu ⊂ Q is said to form a three-dimensional hypersphere within the quaternion manifold. We
refer to quaternions that have a zero scalar part as pure quaternions. Dual quaternions are denoted with a
·̃ to distinguish them from their quaternion counterparts.

II. Dual Quaternions and Rigid Body Motion

The Special Euclidean group, SE(3), contains all possible configurations of a rigid body relative to a fixed
inertial frame. Elements of SE(3) can be described using 4× 4 homogeneous transformation matrices,

SE(3) =

{
T ∈ R4×4

∣∣∣∣ T =

[
C r

03×1 1

]
, C ∈ SO(3), r ∈ R3

}
. (1)

Unit dual quaternions parameterize this set in a similar way that unit quaternions parameterize the Special
Orthogonal group in three dimensions. Dual quaternions may be elegantly derived using the theory of
Clifford algebras as in,36 or by using geometric construction as in the original work of Clifford.34 We adopt
the notation that a dual quaternion is represented as

q̃ = q1 + εq2 ∈ Q2 (2)

where q1, q2 ∈ Q are quaternions and ε 6= 0 is termed the dual unit that satisfies the property ε2 = 0. We
call q1 the real part and q2 the dual part of the dual quaternion q̃. Dual quaternions are elements of the
manifold Q2, an inherently different algebraic construct than the usual Euclidean vector space R8. Unit dual
quaternions form a subset Q2

u ⊂ Q2 within the dual quaternion manifold. Under the usual scalar product, a
dual quaternion of unit norm should satisfy

q̃ · q̃ = (q1 + εq2) · (q1 + εq2) = q1 · q1 + ε (q1 · q2 + q2 · q1) = 1 + ε0. (3)

It can then be observed that the real and dual parts of q̃ must satisfy

q1 · q1 = 1 and q1 · q2 = 0, (4)

in order for q̃ to be a unit dual quaternion. Consequently, we define the set of unit dual quaternions as

Q2
u := {q̃ = q1 + εq2 | q1 · q1 = 1, q1 · q2 = 0} . (5)

Note that the first constraint forces the real part of a unit dual quaternion to be a regular unit quaternion,
i.e. an element of the three dimensional hypersphere Qu. The second constraint dictates that the dual part
of a unit dual quaternion must be an element of the (three dimensional) tangent plane of the hypersphere
at the point q1. As such, we may view the set of unit dual quaternions in (5) as the three dimensional
hypersphere plus all of its tangent planes. Since attitude is encoded in the three dimensional hypersphere
via unit quaternions, the additional three dimensional tangent planes shall provide a natural environment in
which to encode position states.

A. Dual Quaternion Operations

Let q̃, p̃ ∈ Q2
u be two unit dual quaternions, and let a, b ∈ Qu be two unit quaternions. Recall that

quaternions are composed of a vector part and a scalar part, which we shall denote by a = (av, a0) and
b = (bv, b0). We first define quaternion multiplication as

a⊗ b =
(
a0bv + b0av + a×v b, a0b0 − av · bv

)
, (6)
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from which dual quaternion multiplication is defined as

q̃ ⊗ p̃ = q1 ⊗ p1 + ε (q1 ⊗ p2 + q2 ⊗ p1) . (7)

Next, the quaternion cross product is defined as

a� b =
(
a0bv + b0av + a×v b, 0

)
, (8)

which is used in turn to define the dual quaternion cross product23,24

q̃ � p̃ = q1 � p1 + ε (q1 � p2 + q2 � p1) . (9)

We define the quaternion conjugate as a∗ = (−av, a0), which permits the definition of the dual quaternion
conjugate as

q̃∗ = q∗1 + εq∗2 . (10)

For our purposes, we shall embed unit dual quaternions in the eight-dimensional Euclidean space R8 so
that we may use more familiar matrix-vector analysis to manipulate them. To be clear, the elements of Q2

u

defined in (5) form a submanifold of Q2; we merely view them as elements of R8 for convenience. Using the
natural isomorphism

q̃ = q1 + εq2 ∈ Q2
u 7→ q̃ =

[
q1

q2

]
∈ R8

u := {q̃ ∈ R8 | qT1 q1 = 1 and qT1 q2 = 0}, (11)

we henceforth view unit dual quaternions as the subset R8
u ⊂ R8 defined by the constraints qT1 q1 = 1 and

qT1 q2 = 0. By virtue of the first four elements of q̃ ∈ R8
u, it follows that we view unit quaternions as four

dimensional unit vectors embedded in R4. As such, we may now define special matrices to represent the
operations in (7) and (9). Specifically, when viewed as an element of R4 we may rewrite (6) as

q ⊗ p = [q]⊗ p = [p]∗⊗ q (12)

where,

[q]⊗ :=

[
q0I3 + q×v qv

−qTv q0

]
and [p]∗⊗ :=

[
p0I3 − p×v pv

−pTv p0

]
.

Using these definitions, we can then rewrite (7) as

q̃ ⊗ p̃ = [q̃]⊗ p̃ = [p̃]∗⊗q̃, (13)

where,

[q̃]⊗ :=

[
[q1]⊗ 04×4

[q2]⊗ [q1]⊗

]
and [p̃]∗⊗ :=

[
[p1]∗⊗ 04×4

[p2]∗⊗ [p1]∗⊗

]
.

The quaternion and dual quaternion cross products can be rewritten using matrices via the same methods,
see23,24 for more details. It is important to note that due to (11) the dual unit is no longer present in these
expressions. The matrices in (13) are structured so that the matrix-vector multiplication gives the same
result as the definition in (7)a.
In deriving constraints as a function of a dual quaternion, we will make heavy use of the following two results.
For a, b, c ∈ R4 we have

aT (b⊗ c) = bT (a⊗ c∗) = cT (b∗ ⊗ a), (14)

and if q is a unit quaternion, then

aT b = (a⊗ q)T (b⊗ q) = (q ⊗ a)T (q ⊗ b), (15)

which is referred to as the quaternion triple identity .23

aThe columns of these matrices can also be interpreted as the projection of the dual quaternion onto the basis vectors of
the Clifford sub-algebra used to derive them.36
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B. Rigid Body Motion

Let r denote the origin of a body-fixed coordinate frame FB with respect to an inertial coordinate frame
FI , and let q := qB←I ∈ R4 be the unit quaternion representing the orientation of FB with respect to FI .
The composition of a rotation and translation is represented using dual quaternion multiplication. As such,
the unit dual quaternion that represents a translation by r followed by rotation q is given by (taking (11)
into account)

q̃ =

[
q

1
2q ⊗ rI

]
=

[
q

1
2rB ⊗ q

]
∈ R8

u, (16)

where rI and rB denote the coordinates of the vector r in the inertial and body frame respectively. The first
expression describes a translation by rI followed by a rotation q, whereas the second expression describes a
rotation by q followed by a translation rB. Figure 1 depicts each of these cases, and shows how they result
in the same geometric definition of relative position and orientation.
The equivalence of the two expressions in (16) leads to the observation that

rI = q ⊗ rB ⊗ q∗ and rB = q∗ ⊗ rI ⊗ q. (17)

FI

FB

q

rB

⇐⇒
q̃

FI

FB

q

rI

Figure 1: Rotation followed by translation is geometrically equivalent to a translation followed by a rotation.
This leads to the two equivalent definitions of the dual quaternion in (16).

Similarly, we can represent the velocity states using dual quaternions as follows. Let ωB,vB ∈ R3 denote the
angular and linear velocity of a rigid body, respectively, expressed in body frame coordinates. By appending
a zero to each vector, we represent these as pure quaternions and define the dual velocity to be

ω̃ =

[
ωB

vB

]
∈ R8. (18)

Note that there is no requirement that this is unit dual quaternion.

1. Kinematics & Dynamics

We can take a time derivative of (16) to arrive at the dual quaternion kinematic equation.

dq̃

dt
=

d

dt

[
q

1
2rI ⊗ q

]
=

[
q̇

1
2 (ṙI ⊗ q + rI ⊗ q̇)

]
=

[
1
2q ⊗ ωB

1
2 (vI ⊗ q + 1

2rI ⊗ q ⊗ ωB)

]

=
1

2

[
q

1
2rI ⊗ q

]
⊗

[
ωB

vB

]
=

1

2
q̃ ⊗ ω̃ (19)

where we’ve used (17) and (13) to write vI ⊗ q = q ⊗ vB and obtain the second to last equality.
The dynamics are obtained using the Newton-Euler equations in a rotating frame. We assume that neither
the mass nor the inertia are constant. Rather, the mass, m ∈ R+, is assumed to vary as a linear function of
the thrust magnitude according to

ṁ = −α‖uB‖2, α :=
1

Ispge
(20)
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where uB ∈ R3 is the thrust vector in body frame coordinates, Isp is the specific impulse of the rocket
engine in vacuum and ge = 9.806 m/s2 is the acceleration due to gravity at sea level on Earth. The inertia
is assumed to be a function of the mass,

J := J(m) ∈ S3++, (21)

where the specific form of J(m) may vary with applications. We shall define the form assumed for our lunar
landing application in §V. The dynamical equations of motion are then obtained by taking a derivative of
the linear and angular momenta in the rotating body frame according to

d

dt
(mvB) = mv̇B + ω×B (mvB) =

∑
FB + uB, (22a)

d

dt
(JωB) = J̇ωB + Jω̇B + ω×B (JωB) =

∑
TB + r×u uB, (22b)

where FB ∈ R3 and TB ∈ R3 represent the externally applied forces and torques, respectively, and ru denotes
the constant vector from the vehicle’s center of mass to the point where the thrust is applied. We assume
in this work that

∑
FB = gB and

∑
TB = 0, where gB is the force due to gravity in the body frame. Note

that our definition of the mass depletion dynamics in (20) allows us to capture momentum changes due to
mass variability in (22a) using the term uB; see37 for details.
Combining the expressions in (22) with the definition of the dual velocity in (18) leads us to express the
equations of motion in terms of the dual velocity as

J ˙̃ω +
(
ω̃ � J + J̇Er

)
ω̃ = ΦuB + g̃B, (23)

where Er = diag {I4, 04×4} and,

J =


04×4

mI3 0

0 1

J 0

0 1
04×4


8×8

Φ =


I3 0

0 1

r×u 03×1

01×3 0


8×4

g̃B =

[
gB

0

]
8×1

.

We encourage the reader to refer to23,24,32,33 for more details on rigid body kinematics and dynamics using
dual quaternions.

III. Problem Statement

This section details the ingredients necessary to state the continuous-time powered descent guidance problem
that we consider in this paper. Having already stated the equations of motion, this section focuses specifically
on the state and control constraints imposed during powered descent maneuvers. We now assume that the
inertial frame can be described by a set of three orthonormal vectors {xI , yI , zI} such that zI points locally
up, xI points south and yI points east. The body frame can similarly be described by the orthonormal
vectors {xB, yB, zB} that are assumed to describe the vehicle’s principal axes of inertia. We assume that
zB is the vector closest to the vehicle’s vertical axis.
This section is organized as follows. First, §A introduces the state and control constraints that we consider to
form a baseline problem. Next, §B introduces the concept of state-triggered constraints, and §C details their
application to distance-triggered line of sight constraints. We conclude in §D with a complete statement of
the optimal control problem that is to be solved.

A. Baseline Problem

Powered descent guidance problems are subject to several state and control constraints to ensure that
trajectories adhere to both safety considerations and vehicle limitations. We begin our formulation of the
baseline problem by discussing the control constraints.
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1. Control Constraints

The control authority of a rocket-powered vehicle is limited by the rocket engine it is equipped with. These
complex machines necessitate, at times, operation in restricted regimes of thrust and maneuverability. For
example, the main engines of Apollo-era landers could operate either at 93% thrust, or in the permitted
thrust interval of 11% to 65% of the rated thrust value.5 The intervening thrust regions were forbidden to
avoid oxidizer and fuel cavitation, which could lead to the deterioration of propulsion system components.
We have assumed (in (23)) that main engine thrust is the only source of actuation, and thus do not consider
the additional constraints imposed by reaction control systems.
To model permitted thrust regions, we place restrictions on the norm of the thrust vector as

0 < umin ≤ ‖uB‖ ≤ umax, (24)

where [umin, umax] ⊂ R++ denotes the permitted thrust interval. This constraint implies that once ignited,
the engines are not turned off until touchdown.
Next, limited maneuverability of the engine is modeled with a gimbal angle constraint. The gimbal angle,
δ ∈ [0, 90◦), is defined as the total angular deflection of the thrust vector from its nominal position. We
express a gimbal angle constraint as the following second order cone constraint,

− zTBuB + ‖uB‖2 cos δmax ≤ 0 ⇐⇒ ‖uB‖2 ≤ z̄TBuB (25)

where δmax ∈ [0, 90◦) is the maximum allowable gimbal angle and z̄B = (1/ cos δmax) zB.
The final constraint imposed on the control is a rate constraint that ensures commanded thrust vectors do
not change too rapidly for the engine to follow. This is formulated as

∆uB
∆t

≤ ∆umax (26)

where ∆umax ∈ R3
++ denotes the vector of maximum allowable thrust deviations over a specified time

interval ∆t ∈ R++.

2. State Constraints

We now proceed to describe the state constraints enforced in the baseline problem formulation. Powered
descent maneuvers must not use more fuel than is stored on board, a constraint enforced on the mass of the
spacecraft using

m ≥ mdry (27)

where mdry ∈ R++ is the dry mass of the vehicle. Next, we use a glide slope cone to ensure the vehicle’s
altitude lies above the surface of the planet, while also ensuring sufficient elevation at large distances from
the landing site. If rI denotes the inertial position of the vehicle, then we define the glide slope angle to be
the angle formed between rI and zI and denote it by γ ∈ [0, 90◦]. A glide slope constraint enforces that
the glide slope angle must be less than some prescribed maximum value, γmax. Formally, the constraint is
expressed as

− rTI zI + ‖rI‖2 cos γmax ≤ 0. (28)

We can express this with dual quaternions by using (15) to write

‖rI‖ =
(
rTI rI

)1/2
=
(
(rI ⊗ q)T (rI ⊗ q)

)1/2
=

∥∥∥∥
[

04×1

rI ⊗ q

]∥∥∥∥
2

=

∥∥∥∥2

[
04×1

1
2rI ⊗ q

]∥∥∥∥
2

= ‖2Edq̃‖ (29)

where Ed = diag {04×4, I4}. Another application of (15) yields

rTI zI = (rI ⊗ q)T (zI ⊗ q) = (rI ⊗ q)T [zI ]⊗q =
1

2
(rI ⊗ q)T [zI ]⊗q +

1

2
(rI ⊗ q)T [zI ]⊗q,

=

[
q

1
2rI ⊗ q

]T [
04×4 [zI ]T⊗
[zI ]⊗ 04×4

][
q

1
2rI ⊗ q

]
= q̃TMgq̃. (30)

Using (29) and (30), we arrive at the following proposition.
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Proposition 1. The constraint (28) is expressed in terms of the dual quaternion as

cg(q̃) := −q̃TMgq̃ + ‖2Edq̃‖2 cos γmax ≤ 0. (31)

Moreover, the function cg : R8
u → R is convex over the domain dom cg = R8

u

⋂{
q̃ | q̃T q̃ ≤ 1 + 1

4∆2
}

, where
‖rI‖2 ≤ ∆ is an upper bound on the distance from the landing site.

Proof. See23,24 for the proof.

The next constraint we consider is a tilt angle constraint. The vehicle’s tilt angle is the angle formed between
zI and zB, denoted by θ ∈ [0, 90◦), and constrained to be less than some prescribed value. By expressing
zB in inertial coordinates using (17), a tilt constraint is written in terms of the attitude quaternion as

− zTI (q ⊗ zB ⊗ q∗) + cos θmax ≤ 0, (32)

where θmax ∈ [0, 90◦) is the maximum allowable tilt angle. Note that zI and zB are being treated as pure
quaternions in (32). To write this constraint as a function of the dual quaternion, we first use (15) to write

zTI (q ⊗ zB ⊗ q∗) = (zI ⊗ q)T (q ⊗ zB ⊗ q∗ ⊗ q) = (zI ⊗ q)T (q ⊗ zB) = qT (zI ⊗ q ⊗ z∗B) = qT [zI ]⊗[z∗B]∗⊗q,

with which we can rewrite (32) to be

q̃TMtq̃ + cos θmax ≤ 0, Mt =

[
[zI ]⊗[zB]∗⊗ 04×4

04×4 04×4

]
(33)

by noting that −[z∗B]∗⊗ = [zB]∗⊗. Since both zI and zB are unit vectors, we find that the eigenvalues of Mt

lie in the set {−1, 0, 1}, and thus it is a symmetric but indefinite matrix.

Proposition 2. The tilt constraint (32) is equivalently expressed in terms of the dual quaternion as

ct(q̃) := q̃T M̃tq̃ + cos θmax − ζ ≤ 0, M̃t = Mt + ζEr (34)

where Er = diag {I4, 04×4} and ζ is a constant. Moreover, the function ct is convex for all q̃ ∈ R8
u when

θ ∈ (0, 90◦] and ζ ≥ 1.

Proof. The proof follows by noting that q̃TErq̃ − 1 = 0, due to the fact that the real part of the dual
quaternion is a unit quaternion. Hence for any ζ > 0 we have ζ

(
q̃TErq̃ − 1

)
= 0. Adding this term to (33)

yields

q̃TMtq̃ + cos θmax + ζq̃TErq̃ − ζ ≤ 0

q̃T (Mt + ζEr)q̃ + cos θmax − ζ ≤ 0

q̃T M̃tq̃ + cos θmax − ζ ≤ 0.

Now the eigenvalues of M̃t can be obtained as a function of the parameter ζ. Specifically, we find that

spec
{
M̃t

}
= {−1 + ζ, 0, 1 + ζ}.

It is clear then that for ζ ≥ 1, we have M̃t � 0. When this is the case, the Hessian of ct is positive semidefinite
for all q̃ ∈ R8

u and θ ∈ [0, 90◦). Hence ct is convex over this domain.

The final state constraint considered part of our baseline problem is a bound on the angular rate of the
vehicle. We note that due to our assumption that the main engine is the only actuator producing torque,
angular accelerations can be limited by suitable choice of ∆umax in (26). We impose an addition angular
rate constraint of the form

‖ωB‖∞ ≤ ωmax (35)

where ωmax ∈ R++ is the maximum allowable angular velocity about any axis.
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B. State-Triggered Constraints

We now detail the state-triggered constraints and their continuous formulation. State-triggered constraints
(STCs) were introduced in28 and represent constraints that are enforced only when a state-dependent crite-
rion is met. When formulated using the continuous variables of an optimization problem, these constraints
model an if-statement conditioned on the solution variables that they are constraining. In a trajectory gener-
ation problem, optimal solutions are thus obtained with a simultaneous understanding of how the constraint
affects the solution, and of how the solution enables or disables the constraint.
An STC is composed of two functions, the trigger function and the constraint function. Using z ∈ Rnz to
denote an arbitrary solution vector, we denote these by g : Rnz → R and c : Rnz → R, respectively. Vector-
valued trigger and constraint functions are addressed in.38 The constraint function is to be conditionally
enforced based on the value of the trigger function, and thus we formally define the STC to be

g(z) < 0 ⇒ c(z) ≤ 0. (36)

We refer to g(z) < 0 as the trigger condition and c(z) ≤ 0 as the constraint condition. If the trigger function
is non-negative, then the optimization variable z is not subject to the constraint condition. If however, the
trigger function becomes strictly negative (i.e., becomes active), then the state is subject to the constraint
condition. The feasible region in the g(z)-c(z) space is depicted in the bottom two axes of Figure 2.

1. Continuous Formulation

In order to incorporate constraints of the form (36) into a continuous optimization problem, they must be
represented using continuous variables. To do so, we introduce the auxiliary variable σ ∈ R++ and the
following system of equations

σ ≥ 0, (37a)

g(z) + σ ≥ 0, (37b)

σc(z) ≤ 0. (37c)

The idea is to represent the (binary) logical implication in (36) as the outcome of this system of equations
in continuous variables. The equations in (37) are such that when the trigger condition is satisfied, (37b)
and (37a) imply that σ > 0. It follows then that (37c) holds if and only if constraint condition is met.
Therefore (37) is logically equivalent to (36). We refer to this continuous formulation as continuous state-
triggered constraints (cSTCs).
The formulation in (37) does not, however, admit a unique solution for σ. As illustrated in Figure 2, when
g(z) < 0, the auxiliary variable satisfies σ ∈ [−g(z),∞). Moreover, when the trigger condition is not met, σ
is free to be any non-negative number, including a non-zero value that enforces the constraint condition. We
have found that this ambiguity can both inadvertently constrain the solution variables and cause numerical
issues during solutions due to the unboundedness of the slack variable.
To alleviate these problems, we introduce an altered set of constraints motivated by the linear complemen-
tarity problem (LCP).39 The new set of constraints form a complementarity condition between the left-hand
sides of (37b) and (37a), and results in

0 ≤ σ ⊥
(
g(z) + σ

)
≥ 0, (38a)

σc(z) ≤ 0, (38b)

where the notation in (38a) represents the trio of constraints σ ≥ 0, g(z) + σ ≥ 0 and s ·
(
g(z) + σ

)
= 0.

For a given z, (38a) defines an LCP in σ, and we refer to this formulation as the projected continuous
state-triggered constraints (Projected cSTCs). This problem has a unique solution that varies continuously
as a function of z,39 and can be solved for analytically as

σ∗ := −min(g(z), 0). (39)

Substituting σ∗ into (38) guarantees the satisfaction of (38a), and thus we may remove it from the for-
mulation. The result is that (38b) becomes a single, logically equivalent, constraint to (36) that uses only
continuous variables. We define the constraint (38b) with σ∗ to be

h(z) := −min(g(z), 0) · c(z) ≤ 0. (40)
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Feasible Set of cSTC Feasible Set of Projected cSTC

σ ≥ 0, g(z) + σ ≥ 0, σc(z) ≤ 0 0 ≤ σ ⊥
(
g(z) + σ

)
≥ 0, σc(z) ≤ 0

g(z)

c(z)

σ

g(z)

c(z)

c(z)

σ

g(z)

c(z)

σ

g(z)

c(z)

Feasible sets of corresponding STC

Figure 2: Geometric interpretation of cSTCs with an inequality constraint condition. The blue axes on the
left represent the cSTCs in (37), while the green axes on the right represent the Projected cSTCs in (38).
The red regions depict the feasible space of the auxiliary variable σ, with the volume observed in the central
axes portraying the ambiguity noted for (37).

The geometry resulting from this analytical solution for σ∗ is illustrated in the upper-rightmost axes of
Figure 2. The removal of the ambiguity from (37) was accomplished by the additional complementarity
constraint by effectively removing the volume of the red region seen in the central blue set of axes that
denote the feasible space of (37).

C. Distance-Triggered Line of Sight Constraints

We now consider the application of STCs to line of sight constraints. Line of sight (LOS) constraints restrict
the permissible attitude and position of the vehicle such that the vector to the landing site is aligned with
a particular boresight direction within some maximum angle. We denote the LOS angle by ξ ∈ [0, 180◦],
and similarly denote its maximum allowable angle by ξmax. We highlight that this type of constraint has
been considered in powered descent problems in past work,23,24 however it was applied at all times during
a trajectory. The current methodology is required for powered descent problems with tight LOS bounds
imposed by vision-based sensors for two reasons. First, the LOS angle is a constant offset from the sum of
the glide slope and tilt angles. As a result, a small LOS angle can severely limit the maneuverability of the
vehicle, thus limiting the set of feasible initial conditions. Second, long trajectories may require pointing to
different regions of a planets surface to acquire navigation data, something that would typically require the
solution of two problems that are properly joined. The use of STCs can handle these scenarios in a single
optimization framework.
To formulate a distance-triggered LOS constraint, we propose a trigger function gl : R8

u → R of the form

gl(q̃) := d− ‖2Edq̃‖2 (41)

where from (29) the second term is equivalent to the normed distance from the landing site. This function
is seen to satisfy the trigger condition for distances strictly greater than d ∈ R. We note that d = 0 recovers
the previous LOS constraints considered in the literature.23,24

To construct the constraint function, consider a unit vector in body coordinates, pB ∈ R3, that defines the
boresight of an optical sensor or window. The line of sight angle ξ is defined as the angle between pB and
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Figure 3: A line of sight constraint to be conditionally imposed based on the distance from the landing site.

−rB, and the line of sight constraint can be expressed as

rTBpB + ‖rB‖2 cos ξmax ≤ 0, (42)

and is visualized in Figure 3. To write this constraint with dual quaternions, we note that the same trick
from (30) can be used on the first term in (42) to yield

rTBpB = (q ⊗ rB)
T

(q ⊗ pB) = q̃TMlq̃, Ml =

[
04×4 [pB]∗⊗

T

[pB]∗⊗ 04×4

]

which in conjunction with (29) leads us to the following proposition.

Proposition 3. The line of sight constraint (42) is expressed in terms of the dual quaternion as

cl(q̃) := q̃TMlq̃ + ‖2Edq̃‖2 cos ξmax ≤ 0 (43)

Moreover, the function cl : R8
u → R defined above is convex over the domain dom cl = R8

u

⋂{
q̃ | q̃T q̃ ≤

1 + 1
4∆2

}
, where ‖rI‖2 ≤ ∆ is an upper bound on the distance from the landing site.

Proof. See23,24 for the proof.

The distance triggered line of sight constraint can thus be expressed using (40) as

hl(q̃) := −min(gl(q̃), 0) · cl(q̃) ≤ 0. (44)

Remark III.1. The formulation presented here is equally applicable to time-triggered constraints for prob-
lems where either the final or ignition time is a variable. In this case, it is a simple matter to construct the
trigger function to model an arbitrary interval of time as a function of the ignition time t0, the final time tf
and the current time t.

Remark III.2. The state-triggered constraints are formulated in a way that avoids using iterative schemes
that update the constrained temporal intervals based on the value of the trigger function from a previous
iteration. The advantage lies primarily in allowing the optimization process to understand how adjusting the
state will enable or disable the constraint, a feature not enjoyed by these heuristic methods.

D. Problem Statement

We conclude this section with a full statement of the problem to be solved. We state the problem as a
free-final time continuous optimal control problem subject to nonlinear dynamics and both state and control
constraints. We wish to find the burn time, tf ∈ R++ and the piecewise continuous thrust commands uB(t)
for t ∈ [0, tf ] that solve the following optimal control problem.
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min
tf ,uB(·)

−m(tf )

subject to: ṁ = −α‖uB‖2 (20)

˙̃q =
1

2
q̃ ⊗ ω̃ (19)

J ˙̃ω = ΦuB + g̃B −
(
ω̃ � J + J̇Er

)
ω̃ (23)

umin ≤ ‖uB‖2 ≤ umax (24)

‖uB‖2 ≤ z̄TBuB (25)

∆uB
∆t

≤ ∆umax (26)

mdry ≤ m (27)

cg(q̃) ≤ 0 (31)

ct(q̃) ≤ 0 (34)

‖ωB‖∞ ≤ ωmax (35)

hl(q̃) ≤ 0 (44)

(Problem 1)

Finally, we note that the baseline problem is Problem 1 with constraint (44) removed.

IV. Solution Method

This section will briefly describe the solution method for Problem 1. In,28 a method was presented to
convert a general free-final time nonlinear continuous-time optimal control problem into a sequence of fixed-
final time convex discrete-time parameter optimization subproblems. The general formulation was specified
for a powered descent guidance problem using Cartesian variables, however the steps remain the same when
using dual quaternions. The algorithm works by iteratively solving these subproblems until a converged
solution is attained. Each iteration can be decomposed into two main steps; a propagation step and a solve
step. The propagation step is responsible for obtaining a convex approximation to Problem 1, while the solve
step solves this subproblem to full optimality using well-studied algorithms.40–43 The solve step’s solution
is then used during the next iteration’s propagation step to obtain an improved approximation of Problem
1. Upon convergence, the algorithm is designed to obtain solutions that adhere exactly to the nonlinear
dynamics of the problem, while approximating constraint feasibility and local optimality. For brevity, we do
not repeat the steps to obtain a convex approximation of Problem 1 here. We refer the reader to28 for these
details, but provide a summary of the key steps and assumptions made for the current work.
In,44 several methods for the propagation step are compared in a Monte Carlo campaign, and the methods
that appear suitable for real-time implementations were discussed. In particular, the trade study of direct
transcription methods in44 compared methods that parameterize the control trajectory to global pseudospec-
tral methods (that parameterize the state and control trajectories). It was found that the former group of
methods result in a more sparse optimization, leading to faster solution times. When the accuracy of the
solutions was taken into account, a piecewise linear approximation of the control signal was seen to perform
the best over the scenarios tested. As a result of this analysis, we proceed in this work with this assumption
in the propagation step.
We discretize the time interval [0, tf ] ⊂ R+ into N − 1 evenly spaced temporal intervals such that 0 = t0 <
t1 < . . . < tk < . . . < tN−1 = tf . The control trajectory can then be expressed by a set of N vectors
uB,k ∈ R3 such that uB,k = uB(tk). The continuous-time signal is reconstructed using the piecewise linear
interpolation scheme between these discrete values. Each solve step therefore obtains the value of the control
signal at discrete temporal points along the trajectory.
During the propagation step, the nonlinear dynamics in (19), (20) and (23) are approximated by a first
order Taylor series centered about the previous iteration’s solve step solution. We point out that due to
the chosen discretization method,28,44 the behaviour of the original nonlinear dynamics during inter-node
temporal intervals is captured even in the discrete solution. All constraints in Problem 1 are enforced only
at the discrete temporal points, and non-convex state and control constraints are approximated by a first
order Taylor series expansion centered about the previous iteration’s solve step solution.
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V. Numerical Examples

This section provides example solutions to both the baseline problem and Problem 1 discussed in §III. These
examples are intended to demonstrate the main contribution of this paper, namely the distance-triggered
line of sight constraint. The scenario is modeled as a lunar landing whereby the vehicle must provide a line of
sight to the nominal landing site until it has reached a distance of 200m from the landing site. The problem
parameters are given in Table 1, and we assume that the inertia matrix is computed as an affine function of
mass according to

J(m) =

αxm+ βx 0 0

0 αym+ βy 0

0 0 αzm+ βz

 , (45)

where α =
[
αx αy αz

]T
, β =

[
βx βy βz

]T ∈ R3
++ are vehicle specific parameters. For an appropriate choice

of α and β, this model amounts to a linear interpolation between the wet and dry inertia matrices. It is
important to note that the use of this model in conjunction with the solution strategy discussed in §IV means
that all thrust commands are computed with an understanding of how mass depletion will alter the inertia
of the vehicle and affect rotation induced by gimbaling the engine.

Table 1: Problem parameters for the solution of Problem 1.

Parameter Value Units Parameter Value Units

α [1.85 1.85 1.83] m2 β [7605 7605 13395] kg m2

mwet 3250 kg mdry 2100 kg

rI(0) [250 150 433] m vI(0) [−30 0 − 15] m/s

rI(tf ) [0 0 30] m vI(tf ) [0 0 − 1] m/s

ru − 0.25 · zB m ωB(0), ωB(tf ) [0 0 0] ◦/s

Isp 225.0 s q(tf ) [0 0 0 1] -

θmax 80.0 ◦ N 20 -

ωmax 28.6 ◦/s ξmax 30 ◦

γmax 75.0 ◦ pB [0.906 0 − 0.423] -

δmax 20.0 ◦ d 200 m

Tmin 6000 N Tmax 22, 500 N

All problems are solved using SDPT343 and CVX.45 We solve both the baseline problem (Problem 1 with
constraint (44) removed) and Problem 1 for comparison. The solution is initialized with the straight-line
interpolation method detailed in,28 in which each state is linearly interpolated between its boundary values,
and the thrust is chosen to oppose the force of gravity.
Converged trajectories are shown in Figure 4, while corresponding state and control trajectories are given
in Figure 5a and Figure 5b, respectively. In all figures, the black dots represent the discrete solution values
(both states and controls) from the optimization process. The solid curves are the trajectories obtained by
integrating these control signals through the nonlinear dynamics in (19), (20) and (23).
In Figure 4, the light blue lines represent the boresight vector pB at the discrete temporal points used for the
optimization procedure. In particular, the upper-right South-Zenith projection shows how both the attitude
and position of the vehicle are changed from the baseline scenario to account for the pointing constraint
enforced at this distance from the landing site. Figure 5a illustrates the distance from the landing site versus
the line of sight angle for each trajectory. This figure demonstrates that the line of sight angle is maintained
below its desired bound while the vehicle is far enough from the landing site (i.e., when the trigger condition
is active). Since the baseline problem does not enforce the line of sight constraint, the corresponding angles
are seen to violate the desired limit during the initial portion of the descent. Figure 5b indicates, at times,
large deviations in the thrust commands between the two problem instances as the solution to Problem 1
must accommodate for the additional line of sight constraint.
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Figure 4: Converged trajectories for both the baseline problem (brown curve) and Problem 1 (blue curve).
For Problem 1, a line of sight constraint is enforced conditionally on the distance from the landing site. The
light blue line represents the boresight vector pB in both cases.

VI. Conclusions

In this paper, the 6-degree-of-freedom powered descent guidance problem with state-triggered constraints was
formulated. Using dual quaternions to represent the equations of motion, the kinematics, dynamics, and state
and control constraints for a variable mass and variable inertia rigid body with a single engine configuration
were presented. This work introduced the inequality form of state-triggered constraints with an application
to distance-triggered line of sight constraints. The formulation enables the use of continuous optimization
tools to generate and study feasible trajectories that are subject to pointing constraints only during certain
portions of the descent. The solution method leverages recent work in developing iterative methods to solve
nonlinear and nonconvex problems in a way that is amenable to real-time and on-board computation. A
numerical example demonstrates these methods for a representative lunar landing scenario, and highlights
the utility and impact of state-triggered constraints on the resulting state and control trajectories.
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