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This paper introduces a continuous formulation for compound state-triggered constraints,
which are generalizations of the recently introduced state-triggered constraints. State-
triggered constraints are different from ordinary constraints found in optimal control in
that they use a state-dependent trigger condition to enable or disable a constraint condition,
and can be expressed as continuous functions that are readily handled by successive con-
vexification. Compound state-triggered constraints go a step further, giving designers the
ability to compose trigger and constraint conditions using Boolean and and or operations.
Simulations of the 6-degree-of-freedom (DoF) powered descent guidance problem obtained
using successive convexification are presented to illustrate the utility of state-triggered and
compound state-triggered constraints. The examples employ a velocity-triggered angle of
attack constraint to alleviate aerodynamic loads, and a collision avoidance constraint to
avoid large geological formations. In particular, the velocity-triggered angle of attack con-
straint demonstrates the ability of state-triggered constraints to introduce new constraint
phases to the solution without resorting to combinatorial techniques.

Nomenclature

DoF Degrees-of-Freedom
DCM Direction cosine matrix
STC State-Triggered Constraint
cSTC Continuous State-Triggered Constraint
ei Unit vector pointing along ith-axis
I Subscript used to denote the inertial frame
B Subscript used to denote the body frame
FI The inertial UEN frame
FB The body frame
t Time
tin Initial time epoch
tig Ignition time epoch
tf Final time epoch
tc Coast time
tc,max Max allowable coast time
tb Burn time
mdry Dry mass of the vehicle

mig Mass of vehicle at tig
gI Gravity vector
m Vehicle mass
rI Inertial position of the vehicle
vI Inertial velocity of the vehicle
qB←I Unit quaternion relating FI to FB
ωB Angular velocity vector
TB Commanded thrust vector
CB←I DCM rotating from FI to FB
CI←B DCM rotating from FB to FI
γgs Glide-slope cone constraint angle
θmax Maximum allowable tilt angle
ωmax Maximum allowable angular rate
δmax Maximum allowable gimbal angle
Tmin Minimum allowable thrust magnitude
Tmax Maximum allowable thrust magnitude
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I. Introduction

Real-time optimal powered descent guidance algorithms that enable precision landing are key to max-
imizing the probability of landing success. Such algorithms allow the vehicle to cope with a more adverse
set of model uncertainties, environmental disturbances, and unexpected obstacles as the vehicle approaches
the landing site. This increase in robustness can be used to attempt landings in more challenging and sci-
entifically interesting areas, or instead can be reallocated by exchanging excessive propellant mass for an
increased payload mass fraction. In recent years, optimal powered descent guidance technology has played
a key role in the robust recovery of commercial vertical-takeoff-vertical-landing reusable launch vehicles [1],
and is at the forefront of the drive to reduce launch costs for the foreseeable future.

Solving the powered descent guidance problem quickly and reliably is necessary because the vehicle has
a limited amount of propellant, and must react quickly to deviations and conditions observed close to the
ground. Doing so is challenging due to the nonlinear nature of the dynamics, the non-convex nature of the
state and control constraints, and the free-final-time nature of the problem.

Work on powered descent guidance began during the Apollo program, with [2, 3, 4] approaching the prob-
lem using optimal control theory and calculus of variations. However, these methods were not incorporated
into the Apollo flight code since the polynomial-based guidance methods in use at the time were deemed
sufficiently optimal, and were far simpler to design and implement [5]. After the Apollo program, research
continued in search of analytical solutions to the 3-degree-of-freedom (DoF) landing problem [6, 7, 8, 9].

In the early 2000s, interest in the powered descent landing problem renewed, this time with a focus on
robotic missions to Mars. A number of works using direct methods were published, with [10, 11] using
numerical simulations to demonstrate theoretical results on the 3-DoF problem, and with [12, 13, 14] cul-
minating in the use of Pontryagin’s maximum principle to losslessly convexify the 3-DoF problem. These
works were later generalized in [15, 16, 17, 18, 19, 20, 21], and were demonstrated in a sequence of flight
experiments in the early 2010s [22, 23, 24, 25].

In 2015, a dual-quaternion-based approach was proposed in which a 6-DoF line-of-sight constraint was
convexified [26, 27]. This method was inherently equipped to handle 6-DoF motion, but relied on piecewise-
affine approximations to deal with the nonlinear dynamics. As such, the solution degraded in accuracy with
coarser temporal discretizations.

While the convexification techniques listed above represent significant advancements in powered descent
guidance, they remain applicable to a relatively limited class of optimal control problems. On the other
hand, sequential convex programming (SCP) and successive convexification techniques offer a framework for
solving more general non-convex optimal control problems, at the expense of more computational complexity
and weakened optimality and convergence guarantees [28, 29, 30, 31, 32, 33, 34, 35]. These methods work
by converting the non-convex problem into a sequence of convex subproblems that locally approximate the
non-convexities to first-order, and do not carry the approximation to second order as in Sequential Quadratic
Programming (SQP) methodologies [36].

The work presented herein uses the successive convexification and discretization framework developed in
our earlier work [37, 38, 39]. We also draw heavily from our recent work on a free-final-time 6-DoF pow-
ered descent guidance problem with state-triggered constraints [40]. State-triggered constraints represent a
novel formulation that, to the best of our knowledge, has not been introduced in the optimal control liter-
ature. It bears a close resemblance to complementarity constraints [41, 42], which use continuous variables
to model discrete events. Complementarity constraints can be more efficient than mixed-integer approaches
(see Section 2.3 in [43]), which suffer from poor complexity and are not well suited for solving the powered
descent guidance problem in real-time [44]. However, unlike complementarity constraints that make mu-
tually exclusive decisions between two variables, state-triggered constraints are capable of one-way if -then
implications. The primary contribution of this paper is the introduction of a continuous formulation for
compound state-triggered constraints, which generalizes our existing state-triggered constraint formulation.

In subsequent sections, we use the following notation. R+ and R++ respectively denote non-negative and
strictly positive reals, Sn++ denotes an n×n symmetric positive-definite matrix, S3 denotes the unit 3-sphere,
and the superscript c denotes the complement of a set. The symbols • and × respectively represent the vector
dot and cross products, a ⊥ b denotes the orthogonality constraint a • b = 0, and ei denotes the unit vector
with 1 located at the ith element. The subscripts I and B respectively denote quantities expressed in inertial
frame (FI) and body frame (FB) coordinates. The remainder of this paper is organized as follows. In §II,
we discuss state-triggered constraints and the main contribution of this paper; in §III, we give an overview
of successive convexification; in §IV, we present simulation results; and in §V, we conclude the paper.
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II. Continuous State-Triggered Constraints

This section is organized as follows. In §II.A, we review the state-triggered constraint (STC) formulation
introduced in Section II.F of [40]. Specifically, §II.A.1 formally defines STCs, §II.A.2 outlines the continuous
formulation of STCs, §II.A.3 provides an example application for STCs, and §II.A.4 discusses alternative
formulations. In §II.B, we follow the same outline as in §II.A to introduce an extension of state-triggered
constraints called compound state-triggered constraints.

II.A. State-Triggered Constraints

To better understand state-triggered constraints, let us first consider the most common type of constraints
encountered in the optimal control literature: temporally-scheduled constraints. Temporally-scheduled con-
straints are enforced over predefined time intervals that are determined during problem formulation, and
that are not altered while the problem is being solved. For example, such constraints are often be enforced
over the entire time horizon of an optimal control problem.

Unlike a temporally-schedule constraint, a state-triggered constraint is enforced only when a state-
dependent condition is satisfied, and functions as an if -statement conditioned on the solution variable it
constrains. An optimal control problem containing a state-triggered constraint determines its solution vari-
able with a simultaneous understanding of how the constraint affects the optimization, and of how the
optimization enables or disables the constraint.

II.A.1. Formal Definition

A state-triggered constraint is comprised of a trigger condition and a constraint condition that are arranged
such that satisfaction of the former implies satisfaction of the latter. More formally, the logical implication
of a state-triggered constraint is given by

g(z) < 0 ⇒ c(z) = 0, (1)

where z ∈ Rnz represents the solution variable of the parent optimization problem; g(·) : Rnz → R
and c(·) : Rnz → R are piecewise continuously differentiable functions that are termed the trigger func-
tion and constraint function, respectively; and g(z) < 0 and c(z) = 0 are the aforementioned trigger and
constraint conditions.

The feasible set corresponding to (1) is shown in the leftmost pane of Figure 1. The figure illustrates that
simultaneously enforcing the state-triggered constraints g(z) < 0 ⇒ c(z) = 0 and −g(z) < 0 ⇒ c(z) = 0
yields the feasible set corresponding to the orthogonality constraint g(z) ⊥ c(z). Further, intersecting these
feasible sets with the set { g, c : g ≥ 0 , c ≥ 0 } recovers the feasible set of the the well-known complementarity
constraint 0 ≤ g(z) ⊥ c(z) ≥ 0 [41]. When viewed in the g-c plane, both orthogonality and complementarity
constraints effectively represent bi-directional if-and-only-if -statements, whereas state-triggered constraints

⋂
=

g(z)

c(z)

{
g, c : g < 0 ⇒ c = 0

}

g(z)

c(z)

{
g, c : −g < 0 ⇒ c = 0

}

g(z)

c(z)

{
g, c : g ⊥ c

}

Figure 1: The feasible sets of STCs (left and center panes) and orthogonality constraints (right pane). The
feasible sets of the STCs can be intersected in order to recover the feasible set of an orthogonality constraint,
and thus capture a broader set of logic in the g-c plane.
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Rnz

Z

G

C

The state-triggered constraint

g(z) < 0 ⇒ c(z) = 0 ensures

that feasible solutions do

not lie inside G ∩ Cc
Set where the

state-triggered

constraint

is active

The feasible set

with the state-triggered

constraint included is Z ∩
(
Gc ∪ C

)
G :=

{
z ∈ Rnz : g(z) < 0

}
C :=

{
z ∈ Rnz : c(z) = 0

}
Z :=

{
z ∈ Rnz : z is feasible w.r.t. all other constraints

}

Figure 2: A Venn diagram of the sets of solution variables z ∈ Rnz that satisfy the trigger condition (G),
constraint condition (C), and all other state and control constraints excluding STCs (Z). State-triggered
constraints ensure that feasible solutions satisfy z /∈

(
G ∩ Cc

)
.

emulate if -statements. Thus, we argue that the state-triggered constraint formulation represents a more
general logical building block for the design of guidance algorithms.

Defining the sets G, C, and Z as in Figure 2, the statement “z ∈ G implies z ∈ C ” is typically taken to
mean that G ⊆ C. However, as seen in Figure 2, G is not necessarily a subset of C. In fact, if the trigger
and constraint functions are defined such that G ⊆ C, then the corresponding state-triggered constraint is
trivially satisfied and serves no practical purpose in the context of the optimization problem. However,
if g(z) and c(z) are defined such that G 6⊆ C, then the state-triggered constraint removes the set G ∩ Cc from
the feasible set, thus ensuring that G ⊆ C over the remaining feasible set.

Before proceeding, we note that (1) can equivalently represent a state-triggered inequality constraint,
provided that z is augmented with a non-negative slack variable and that g(z) and c(z) are modified accord-
ingly [45]. Thus, we proceed with the understanding that the equality in (1) can just as well be replaced
with an inequality. Additionally, from De Morgan’s Law, satisfaction of (1) implies satisfaction of the
contrapositive c(z) 6= 0 ⇒ g(z) 6= 0. This behavior is exhibited in the simulation examples presented in §IV.

II.A.2. Continuous Formulation

The continuous formulation corresponding to the state-triggered constraint in (1) is given by the following
system of equations

g(z) + σ ≥ 0, (2a)

σ ≥ 0, (2b)

σ · c(z) = 0, (2c)

where σ ∈ R+ is an auxiliary variable that enables or disables the constraint condition. We refer to (2) as
the original formulation, and note that it possesses an ambiguity in σ given a g(z) and c(z). This form can
be written more compactly and without the ambiguity in σ using the projected formulation given by

h(z) := −min
(
g(z), 0

)
· c(z) = 0. (3)

Note that the feasible sets of (2) and (3) are identical to that of (1) shown in the leftmost pane of Figure 1.
The continuous state-triggered constraints (cSTCs) presented above are therefore logically equivalent to the
state-triggered constraints detailed in §II.A.1, and can be readily incorporated into a continuous optimization
framework. For more details, we refer the reader to Section II.F in [40].
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vB(t)

Vα

Set of velocities

where trigger

condition is

not satisfied

FB

e1

e2

e3

(a) Disabled Constraint Condition

vB(t)

Vα

Velocity-triggered

angle of attack

constraint cone

FB

e1

e2

e3

α(t)

(b) Enabled Constraint Condition

Figure 3: An example powered descent guidance application where a velocity-triggered angle of attack
constraint is used to alleviate aerodynamic loads experienced by the vehicle. The set of velocities that do
not satisfy the trigger condition (and for which the constraint condition is not enforced) is represented by
the blue sphere in (a). When the trigger condition is satisfied, the velocities are constrained to the blue cone
shown in (b).

II.A.3. Example Application

The continuous state-triggered constraint formulation outlined in §II.A.2 allows a richer set of constraints
to be incorporated into a continuous optimization framework. For example, consider the problem of aerody-
namic load alleviation during an atmospheric powered descent guidance maneuver. Imposing a single angle
of attack constraint over the entire length of the trajectory may be overly conservative, and may eliminate
large swaths of otherwise feasible solutions. Hence, we state the objective of an aerodynamic load alleviation
constraint as follows: limit the angle of attack of the vehicle when the dynamic pressure is high, and leave
the angle of attack unconstrained when the dynamic pressure is negligible.

Assuming constant atmospheric density, this constraint may be interpreted as a velocity-triggered angle
of attack constraint, and is stated formally as the following state-triggered constraint

‖vB(t)‖2 > Vα ⇒ −e1 • vB(t) ≥ cosαmax ‖vB(t)‖2 , (4)

where Vα ∈ R++ is a speed above which the angle of attack is limited to α(t) ∈ [0 , αmax], and vB(t) ∈ R3 is the
velocity expressed in FB coordinates. Figure 3a shows the set of feasible velocities when the trigger condition
is not satisfied and the constraint condition is disabled. Figure 3b shows the set of feasible velocities when
the trigger condition is satisfied and the constraint condition is enabled. Using the projected formulation
in (3), the STC in (4) is converted into the following cSTC:

hα
(
vI(t), qB←I(t)

)
:= −min

(
gα
(
vI(t)

)
, 0
)
· cα
(
vI(t), qB←I(t)

)
≤ 0, (5a)

gα
(
vI(t)

)
:= Vα − ‖vI(t)‖2 , (5b)

cα
(
vI(t), qB←I(t)

)
:= cosαmax ‖vI(t)‖2 + e1 • CB←I

(
qB←I(t)

)
vI(t), (5c)

where vI(t) ∈ R3 is the inertial velocity, qB←I(t) ∈ S3 ⊂ R4 is the unit quaternion representing the
transformation from FI to FB, and CB←I(t) := CB←I

(
qB←I(t)

)
is the direction cosine matrix associated

with qB←I(t).

II.A.4. Alternative Formulations

We now consider a few alternative formulations that can be used in lieu of the continuous state-triggered
constraint formulation presented above. Since mixed-integer methodologies were deemed not conducive to
solving the powered descent guidance problem in real-time, we do not consider them further. To present
these alternatives, the following discussion assumes a powered descent guidance problem that includes the
state-triggered constraint formalized in (4).
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Alternative 1 - Naive Implementation: The first implementation we consider is a naive implementation that
uses temporally-scheduled constraints. Due to its simplicity, this approach is arguably the most obvious
implementation one might pursue when trying to capture the logical implication in (4). In this approach,
the optimization problem is first solved without (4), and the resulting solution is used to determine the set
of times Tg over which the trigger condition gα(·) < 0 is satisfied. The problem is then solved a second time,
this time with the constraint condition cα(· , ·) ≤ 0 enforced for all t ∈ Tg. The second solution is guaranteed
to satisfy the constraint condition for all t ∈ Tg. However, this solution may have time instances t ∈ T −g ⊆ Tg
for which the trigger condition is no longer satisfied, and where the constraint condition is needlessly en-
forced. This solution may also have time instances t ∈ T +

g ⊆ T cg where the trigger condition is now satisfied,
and for which the implication in (4) is violated. Thus, the inclusion of the constraint condition in the second
attempt may alter the solution such that the triggering profile assumed at the onset is invalidated. Clearly,
the second solution may be used to redefine the set Tg, and the procedure can be repeated. However, since
this approach obscures the relationship between the trigger and constraint conditions from the optimization,
this behavior may persist indefinitely. Continuous state-triggered constraints avoid this issue by exposing
the relationship between the trigger and constraint conditions to the optimization algorithm.

Alternative 2 - Nonlinear Implementation: The second implementation we consider is one where (4) is
replaced with −e1 • vB(t)/ ‖vB(t)‖2 ≥ cos fα(t), where fα(t) := fα

(
‖vB(t)‖2

)
is a nonlinear scalar-valued

function that relates the maximum allowable angle of attack to the speed of the vehicle. Unlike the formula-
tion used in (5) which switches the constraint condition on and off in a binary fashion, this approach adjusts
the constraint condition smoothly according to fα(·). That is, instead of enforcing an angle of attack limit
at high speeds and disabling it at low speeds, this implementation always enforces an angle of attack limit
that varies smoothly as a function of speed. The ability to specify a smooth transition profile to modulate
the constraint condition may be advantageous in certain cases. For example, it may be desirable to leave the
angle of attack unconstrained at low speeds, and to restrict it to a maximum of 3◦ and 5◦ at intermediate and
high speeds, respectively. Using the STC framework, such a profile would either have to be conservatively
approximated, or multiple cSTCs would have to be used. However, the nonlinear implementation has two
disadvantages when compared to the cSTC approach. First, it is less intuitive since the relationship between
the angle of attack and speed must be embedded in fα(t). This disadvantage can become particularly ac-
centuated when the geometry of the constraint is multi-dimensional and difficult to visualize. Second, even
if a satisfactory function fα(t) is obtained, it may be difficult to ensure it has sufficiently good numerical
properties (e.g. optimization problems with high-order polynomials may be difficult to solve reliably).

Alternative 3 - Multi-Phase Implementation: The third implementation we consider splits the problem into
two temporal phases: the first phase includes an angle of attack constraint but no velocity constraint, and
the second phase includes a velocity constraint but no angle of attack constraint. The terminal condition of
the first phase is equated to the initial condition of the second, and both phases are solved simultaneously
as one optimal control problem. This multi-phase optimization approach ensures satisfaction of (4) by
construction, and is well suited for applications where the quantity and temporal ordering of the phases is
known a priori. For example, this approach is ideal for optimizing the ascent trajectories of multi-staged
rockets. However, since this approach presupposes the quantity and order of the phases, it may introduce
unnecessary conservatism. In contrast, cSTCs are able to rearrange and introduce additional phases to
achieve feasibility or improve optimality. An example of this behavior is presented in §IV.

II.B. Compound State-Triggered Constraints

The state-triggered constraint formulation presented in §II.A assumes scalar-valued trigger and constraint
functions. This section introduces the primary contribution of this paper, namely a novel continuous formu-
lation for compound state-triggered constraints.

Compound state-triggered constraints are defined using vector-valued trigger and constraint functions
whose elements are composed into compound conditions using Boolean logic operations. The compound
formulation is a generalization of the formulation given in (1), and offers a straightforward procedure whereby
simple trigger and constraint function elements can be composed into more complicated trigger and constraint
conditions. We proceed as in §II.A by defining compound state-triggered constraints, presenting a continuous
formulation, providing example applications, and considering alternative formulations.
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II.B.1. Formal Definition

The scalar state-triggered constraint defined in (1) may be generalized to one of the following compound
state-triggered constraints

Or -Trigger with Or -Constraint:

ng∨
i=1

(
gi(z) < 0

)
⇒

nc∨
i=1

(
ci(z) = 0

)
, (6a)

Or -Trigger with And -Constraint:

ng∨
i=1

(
gi(z) < 0

)
⇒

nc∧
i=1

(
ci(z) = 0

)
, (6b)

And -Trigger with Or -Constraint:

ng∧
i=1

(
gi(z) < 0

)
⇒

nc∨
i=1

(
ci(z) = 0

)
, (6c)

And -Trigger with And -Constraint:

ng∧
i=1

(
gi(z) < 0

)
⇒

nc∧
i=1

(
ci(z) = 0

)
, (6d)

where g(·) : Rnz → Rng and c(·) : Rnz → Rnc are redefined as vector-valued trigger and constraint functions,
and where gi(z) and ci(z) represent the ith entries of the vectors g(z) and c(z), respectively. When at
least one element of the compound trigger condition is satisfied, (6a) implies that at least one element of
the compound constraint condition is enforced, whereas (6b) implies that all elements of the compound
constraint condition are enforced. When all elements of the compound trigger condition are satisfied, (6c)
implies that at least one element of the compound constraint condition is enforced, whereas (6d) implies that
all elements of the compound constraint condition are enforced. Note that the compound generalizations
in (6) recover the scalar definition in (1) when ng = nc = 1.

II.B.2. Continuous Formulation

The projected continuous formulations corresponding to the compound state-triggered constraints defined
in (6) are tabulated in Table 1. Note that σ̂i(z) := −min

(
gi(z), 0

)
≥ 0 for all i ∈ {1, . . . , ng}, and

that h∧∧(·) = 0 and h∨∧(·) = 0 may be implemented as standalone equality constraints only if ci(z) ≥ 0
holds for all i ∈ {1, . . . , nc}. However, when element-wise non-negativity of c(z) does not hold, h∧∧(·)
and h∨∧(·) must be implemented as nc distinct equality constraints respectively given by cj(z)·

∏ng

i=1 σ̂i(z) = 0
and cj(z) ·

∑ng

i=1 σ̂i(z) = 0 for all j ∈ {1, . . . , nc}. The standard continuous formulation can be obtained
from Table 1 by replacing σ̂i(z) with elements of a non-negative vector-valued σ ∈ Rng

+ that adheres to (2a)
and (2b) for each i ∈ {1, . . . , ng}.

Table 1: Summary of Compound Continuous State-Triggered Constraints

Compound Compound Continuous Implementation

Trigger Condition Constraint Condition σ̂i(z) := −min
(
gi(z), 0

)
ng∧
i=1

(
gi(z) < 0

)
ng∧
i=1

(
gi(z) < 0

)
ng∨
i=1

(
gi(z) < 0

)
ng∨
i=1

(
gi(z) < 0

)

nc∧
i=1

(
ci(z) = 0

)
nc∨
i=1

(
ci(z) = 0

)
nc∧
i=1

(
ci(z) = 0

)
nc∨
i=1

(
ci(z) = 0

)

h∧∧(z) :=

[
ng∏
i=1

σ̂i(z)

]
·

[
nc∑
i=1

ci(z)

]
= 0 , c(z) ≥ 0

h∧∨(z) :=

[
ng∏
i=1

σ̂i(z)

]
·

[
nc∏
i=1

ci(z)

]
= 0

h∨∧(z) :=

[
ng∑
i=1

σ̂i(z)

]
·

[
nc∑
i=1

ci(z)

]
= 0 , c(z) ≥ 0

h∨∨(z) :=

[
ng∑
i=1

σ̂i(z)

]
·

[
nc∏
i=1

ci(z)

]
= 0
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(a) Landing in a Crater or Canyon
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Keep-out volume

e1
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b

c

(b) Landing Near Cliffs or Mesas

Figure 4: An example powered descent guidance application where compound state-triggered constraints are
used to avoid collisions with geological formations near the landing site.

II.B.3. Example Application

To motivate the use of compound STCs, consider a scenario where the objective is to land in the vicinity of
large geologic formations such as the craters, canyons, cliffs, or mesas. Figure 4a illustrates a scenario where
the landing site is located at the bottom of a crater or canyon. Using the parameters defined in the figure,
the collision avoidance constraint is given by the following or -triggered compound STC(

e2 • rI(t) < −a
)
∨
(
b < e2 • rI(t)

)
⇒ c− e1 • rI(t) ≤ 0,

where rI(t) ∈ R3 is the vehicle’s inertial position vector. The corresponding compound cSTC is given by

h∨
(
rI(t)

)
:=

[ 2∑
i=1

−min
(
g∨,i

(
rI(t)

)
, 0
)]
· c∨
(
rI(t)

)
≤ 0,

g∨,1
(
rI(t)

)
:= a+ e2 • rI(t),

g∨,2
(
rI(t)

)
:= b− e2 • rI(t),

c∨
(
rI(t)

)
:= c− e1 • rI(t).

Figure 4b illustrates a similar but more challenging scenario, where a keep-out volume is used to steer
the vehicle away from geological formations such as cliffs or mesas. Following the procedure outlined above,
we obtain a continuous formulation of the collision avoidance constraints using the following and -triggered
compound cSTC

h∧
(
rI(t)

)
:=

[ 2∏
i=1

−min
(
g∧,i

(
rI(t)

)
, 0
)]
· c∧
(
rI(t)

)
≤ 0, (8a)

g∧,1
(
rI(t)

)
:= a− e2 • rI(t), (8b)

g∧,2
(
rI(t)

)
:= b− e3 • rI(t), (8c)

c∧
(
rI(t)

)
:= c− e1 • rI(t). (8d)

II.B.4. Alternative Formulations

The scenario described in §II.B.3 can instead be addressed using the glide-slope cone constraint formulated
in [14]. However, enforcing a sufficiently steep constraint over the entire trajectory may be overly conserva-
tive, and may prohibitively restrict the set of feasible initial conditions (e.g., Mars’ Valles Marineris reaches
depths of up to 7 km). Alternatively, enforcing the constraint over only a terminal time interval may allow
the trajectory to violate the physical constraints at times prior to said interval. While this approach may
work in certain cases, the heuristics it employs may fall short for applications that have a large set of possible
initial conditions.

Alternatively, this scenario can be addressed using the multi-phase optimization approach presented
in [46], which is similar to Alternative 3 discussed in §II.A.4. The multi-phase optimization approach is
well suited for this example application since the quantity and ordering of the phases is known a priori
(provided that the altitude decreases monotonically). Nevertheless, we argue that compound state-triggered
constraints offer a simple way to formulate complex keep-out volumes in the scenario described above.
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III. Problem Statement & Convex Formulation

In this section, we outline a problem statement for a non-convex 6-DoF powered descent guidance problem,
and provide a high-level description of the successive convexification procedure used to solve it. The content
of this section is drawn from Sections II and III of [40], and is provided as context for §IV.

III.A. Non-Convex Problem Statement

We consider the minimum-time 6-DoF powered descent guidance problem given in Problem 1, which is
comprised of nonlinear dynamics and non-convex state and control constraints. This problem formula-
tion includes the baseline problem formulation, free-ignition-time modification, and ellipsoidal aerodynamics
model detailed in Sections II.A-II.E of [40]. Additionally, we include the velocity-triggered angle of attack
constraint discussed in §II.A.3, and the collision avoidance constraint formulated in §II.B.3.

Our problem formulation consists of three time epochs: initial time tin, ignition time tig, and final
time tf. These epochs are defined such that tin ≤ tig < tf. We call the time interval t ∈ [tin , tig] the coast
phase, and the interval t ∈ [tig , tf] the burn phase. During the coast phase, the engine is off, and the vehicle
state evolves passively along a predetermined trajectory (as is discussed shortly). We denote the coast time
by tc := tig− tin, and the maximum allowable coast time by tc,max. During the burn phase, the engine is on,
and the vehicle actively maneuvers to achieve its landing objective. We denote the burn time by tb := tf−tig.

The states of the problem are the mass m(t) ∈ R++, angular velocity ωB(t) ∈ R3, and the position rI(t),
velocity vI(t), and unit quaternion qB←I(t) introduced in §II.A.3 and §II.B.3. The control of the problem is
the thrust vector TB(t) ∈ R3. These are summarized as the state vector

x(t) :=
[
m(t) rTI (t) vTI (t) qTB←I(t) ωTB (t)

]T ∈ R14,

and the control vector u(t) := TB(t) ∈ R3. Since this is a free-final-time minimum-time problem with a
free-ignition-time modification, the cost function of the problem is given by J(z) := tb, and the solution
variable is given by

z(t) :=
[
tc tb x

T (t) uT (t)
]T ∈ R19.

At the ignition time epoch, the following boundary conditions are enforced

m(tig) = mig, rI(tig) = pr,ig(tc), vI(tig) = pv,ig(tc), ωB(tig) = 0,

where, due the free-ignition-time modification, the ignition time position and velocity are constrained to
lie on curves described by the polynomials pr,ig : R → R3 and pv,ig : R → R3. Although our problem
formulation considers aerodynamic effects, we assume that pr,ig(·) and pv,ig(·) describe an aerodynamics-free
free fall trajectory given by

pr,ig(tc) := rI,in + vI,in tc +
1

2
gIt

2
c, pv,ig(tc) := vI,in + gItc,

where rI,in and vI,in are prescribed initial-time position and velocity vectors, and gI ∈ R3 is the (constant)
gravity vector. We note, however, that pr,ig(·) and pv,ig(·) can be formulated to reflect higher order effects
such as aerodynamics. At the final time epoch, the following boundary conditions are enforced

rI(tf) = 0, vI(tf) = 0, qB←I(tf) = qid, ωB(tf) = 0,

where qid := [1 0 0 0]T denotes the identity quaternion.
The mass state of the vehicle evolves according to the affine (in thrust) mass depletion dynamics used

in [37], while the translational and attitude states evolve according to 6-DoF rigid body dynamics. The former
depends on the mass depletion coefficients αṁ ∈ R++ and βṁ ∈ R+ that are functions of the specific impulse,
nozzle exit area, and atmospheric back pressure. The latter is affected by the commanded thrust TB(t) and
the aerodynamic force AB(t) ∈ R3, which apply torque to the vehicle with moment arms rT,B ∈ R3 and
rcp,B ∈ R3, respectively. The aerodynamic force is defined by the ellipsoidal aerodynamic model introduced
in Section II.E of [40]. Additionally, we use Ω(·) to denote the 4× 4 skew-symmetric matrix associated with
the quaternion kinematics, and JB ∈ S3++ to denote the vehicle’s body-fixed constant inertia.

The problem formulation includes state inequality constraints that keep the mass above a dry mass
mdry ∈ R++, the position inside a glide slope cone with a half-angle of γgs ∈ [0◦ , 90◦), the tilt angle less
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Problem 1. Non-Convex Optimal Control Problem

Cost Function:
minimize
tc, tb, TB(t)

tb

s.t. tc ∈ [0 , tc,max]

Boundary Conditions:
m(tig) = mig qB←I(tf) = qid

rI(tig) = pr,ig(tc) rI(tf) = 0

vI(tig) = pv,ig(tc) vI(tf) = 0

ωB(tig) = 0 ωB(tf) = 0

Dynamics:
ṁ(t) = −αṁ ‖TB(t)‖2 − βṁ
ṙI(t) = vI(t)

v̇I(t) =
1

m(t)
CI←B(t)

(
TB(t) +AB(t)

)
+ gI

q̇B←I(t) =
1

2
Ω
(
ωB(t)

)
qB←I(t)

JBω̇B(t) = rT,B × TB(t) + rcp,B ×AB(t)− ωB(t)× JBωB(t)

State Constraints:

Control Constraints:

State-Triggered Constraints:

mdry ≤ m(t)

tan γgs ‖HγrI(t)‖2 ≤ e1 • rI(t)

cos θmax ≤ 1− 2 ‖HθqB←I(t)‖2
‖ωB(t)‖2 ≤ ωmax

0 < Tmin ≤ ‖TB(t)‖2 ≤ Tmax

cos δmax ‖TB(t)‖2 ≤ e3 • TB(t)

hα
(
vI(t), qB←I(t)

)
≤ 0

h∧
(
rI(t)

)
≤ 0

See (5)

See (8)

than θmax ∈ (0◦ , 90◦], and the angular velocity magnitude less than ωmax ∈ R++. The matrices in the glide
slope and tilt constraints are defined as Hγ := [e2 e3]T ∈ R2×3 and Hθ := [e3 e4]T ∈ R2×4, respectively.
The formulation also includes two control constraints. The first constraint limits the thrust magnitude to a
minimum value of Tmin and a maximum value of Tmax, while the second ensures that the gimbal angle does
not exceed δmax ∈ (0◦ , 90◦). We refer the reader to [40] for more details.

III.B. Convex Formulation

Successive convexification is an iterative solution methodology wherein the original non-convex problem is
converted into a sequence of manageable convex approximations, or subproblems. These convex subproblems
can be solved using fast and reliable interior point method algorithms [47, 22], thereby bolstering the real-
time capabilities of the successive convexification methodology. While the field of solving convex optimization
problems is quite mature, methods that convert a non-convex optimal control problem into a numerically
tractable parameter optimization problem are more varied.

Section III in [40] outlines a procedure whereby the original free-final-time nonlinear continuous-time
discrete-time optimal control problem (i.e. Problem 1) is converted into a fixed-final-time linear-time-varying
optimal control problem. This procedure consists of three analytical steps that normalize, linearize, and dis-
cretize the problem. The result of these three steps is a numerically tractable second-order cone programming
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Figure 5: High-level description of the successive convexification algorithm. The top half of the figure shows
the three analytical steps that comprise the propagation step. The propagation step generates a fixed-final-
time second-order cone programming subproblem that is solved during the solve step. The propagation
and solve steps are executed numerically at run-time. The converged solution exhibits the three properties
detailed in the text boxes at the bottom.

subproblem that locally approximates Problem 1. Due to the linearization step, this local approximation is
guaranteed to be convex. This procedure is illustrated in Figure 5.

In practice, successive convexification works as follows. The iterative process is initialized with a user-
specified reference trajectory. During the first iteration, the three analytical steps mentioned above are
executed as part of the propagation step. The propagation step computes a set of matrices that characterize
the approximated discrete-time linear-time-varying dynamics and linearized state and control constraints
associated with the convex subproblem. The resulting second-order cone programming subproblem is sub-
sequently solved in the solve step, and its solution is used as the reference trajectory for the subsequent
successive convexification iteration.

Since the subproblem is an approximation of the non-convex elements of Problem 1 obtained through
linearization, one might expect the process described above to generate approximate solutions. While this
is true in some sense, we emphasize that a converged solution of the process shown in Figure 5 has the
following three properties: (i) the solution exactly satisfies the nonlinear dynamics, (ii) the solution satisfies
the state and control constraints at a finite number of temporal nodes defined during the discretization step,
and (iii) the solution is approximately (locally) optimal. The third property is due to the first-order-hold
interpolation used in [40] to represent the infinite dimensional control signal as a finite-dimensional linearly
interpolated signal. The reader is referred to Section III of [40] for more details on the propagation step and
on the successive convexification algorithm.

Convergence guarantees for a successive convexification algorithm were presented in [31, 33]. The algo-
rithm presented in these works employed a virtual control term, hard trust regions, and an exact penalty
method, and was guaranteed to converge globally to a (not necessarily feasible) stationary point. The result
stated that a converged solution with zero virtual control was a local optimum of the original problem.
In contrast, the algorithm used herein and in [40] uses soft trust regions that are augmented to the cost,
and does not yet have convergence results. However, it is similar in structure to the algorithm presented
in [31, 33], and has been observed to work well in practice. Moreover, the results obtained in [40] provide
preliminary evidence of the real-time capabilities of our methodology.
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IV. Numerical Results

In this section we present simulation results that demonstrate the utility of state-triggered and compound
state-triggered constraints. Section IV.A presents an example that uses the velocity-triggered angle of attack
constraint discussed in §II.A.3 to alleviate aerodynamic loading, while §IV.B presents an example that uses
the collision avoidance compound state-triggered constraint discussed in §II.B.3. Tables 2 and 3 provide
the problem parameters used in the simulations. These values correspond to the parameters in Problem 1
when they can be matched. Otherwise, these values reference parameters defined in Problem 1, Problem 2,
and Algorithm 1 in [40]. The results presented here were obtained using the spherical aerodynamics model
detailed Section II.E of [40], with the quantity ρSACA = 0.2. The maximum coast times and the initial
positions and velocities are specified individually in §IV.A and §IV.B. The remaining boundary conditions
are given in Problem 1 in §III.A. All quantities are expressed in non-dimensionalized mass (UM ), length
(UL), and time (UT ) units.

Table 2: Traj. Parameters Table 3: Vehicle & Algorithm Parameters

Param. Value Units Param. Value Units

gI − e1 UL/U
2
T rcp,B 03×1 UL

αmax 10.0 ◦ rT,B − 0.01 · e1 UL

Vα 2.5 UL/UT αṁ 0.05 UT /UL

mig 4.0 UM βṁ 0.02 UM/UT

mdry 2.0 UM JB 0.01 · diag
([

0.1 1 1
])

UM · U2
L

θmax 90.0 ◦ K 30 -

ωmax 90.0 ◦/UT wν 1e+3 -

γgs 20.0 ◦ Wtr diag
(
[3e-6 · 1T2×1 1e-3 · 1T17×1]

)
-

δmax 20.0 ◦ εvc 1e-4 -

Tmin 1.0 UM · UL/U2
T εtr 1e-1 -

Tmax 8.0 UM · UL/U2
T s̄ 10.0 -

IV.A. Example 1: State-Triggered Constraints

This example illustrates the velocity-triggered angle of attack constraint described in §II.A.3. Figure 6 shows
a powered descent guidance trajectory that begins on the free fall trajectory shown in black. In this case, the
vehicle is not subjected to a state-triggered constraint. The initial position is given by rI,in = [14 16 0]T UL,
and the initial velocity by vI,in = [0 − 3.57 1.79]T UL/UT . The vehicle is permitted to coast down this
path for a maximum duration of tc,max = 2.0, at which point the coast phase ends, the engine ignites, and
the burn phase commences. The vehicle can be seen maneuvering away from the original free fall trajectory
using a bang-bang style thrust profile, landing at the landing site located at the origin. Figures 6a and 6b
show the same trajectory from different angles. Specifically, the horizontal projection shown at the bottom
of the figures clearly shows that the vehicle starts moving away from the free fall trajectory as soon as the
burn phase beings.

Figure 7 shows the same scenario but with the velocity-triggered angle of attack constraint enabled. In
this case, the vehicle can be seen to travel along the free fall trajectory for a period of time before making
a sudden turn towards the landing pad. This behavior is due to the state-triggered constraint, which forces
the vehicle to apply thrust to slow down prior to pulling a high angle of attack. This behavior is shown more
clearly in Figure 8 which compares the speed and angle of attack time histories of the two cases.

In Figure 8a, the angle of attack clearly violates the prescribed limit of 10◦ when the speed is above the
trigger velocity of 2.5 UL/UT . However, in Figure 8b, the behavior is markedly different. First of all, the
angle of attack begins below the specified angle of attack limit. The vehicle is seen shedding speed between
times 0 UT and 1 UT in an attempt to deactivate the trigger condition. Once it does so, the constraint
condition is no longer enforced, and the angle of attack is allowed to increase to close to 90◦. Enforcement of
the contrapositive can be seen between times 2 UT and 4 UT , where since the angle of attack is so large, the
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(b) Cross-Range View

Figure 6: A powered descent guidance scenario with a free-ignition-time free fall trajectory (shown in black)
and with no state-triggered constraint. The trajectory is shown in green, the thrust vectors in red, and the
long axis of the vehicle in blue.
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(b) Cross-Range View

Figure 7: A powered descent guidance scenario with free-ignition-time and a velocity-triggered angle of
attack constraint.

vehicle is not allowed to break the prescribed speed limit. Between times 4 UT and 6 UT , the velocity climbs
above the trigger value because the angle of attack is below its threshold. This behavior demonstrates that
the state triggered constraint can introduce a new constraint phase into the solution, where the multi-phase
optimization approach described in Alternative 3 of §II.A.4 would have failed to do so. Moreover, the peak
seen between times 5 UT and 6 UT in the top plot of Figure 8b is a result of the vehicle exploiting a low
angle of attack to gain speed and reduce its minimum time objective. Lastly, as one would expect, the case
in Figure 8a managed to find a more optimal burn time when compared to the more constrained case in
Figure 8b.
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Figure 8: Velocity and angle of attack time histories of the cases shown in Figure 8a and 8b. The black lines
represent the trigger velocity Vα and the angle of attack limit αmax.

(a) Down-Range View (b) Cross-Range View

Figure 9: A powered descent guidance scenario with a collision avoidance compound state-triggered con-
straint. The vehicle can be seen maneuvering clear of the geographical feature.

IV.B. Example 2: Compound State-Triggered Constraints

Figure 9 shows a powered descent guidance trajectory employing a compound state-triggered constraint to
avoid geological formations. This case is initialized at an altitude 6 UL lower than the previous example,
with the same initial velocity and coast time. While this simulation result succeeded, additional work will
be required to improve convergence properties for these constraints.
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V. Conclusion

This paper presents a powered descent guidance problem formulation that contains state-triggered and
compound state-triggered constraints. The primary contribution of this paper is a novel continuous formu-
lation for compound state-triggered constraints. This formulation is a generalization of the state-triggered
constraint formulation presented in [40], and enables the use of trigger and constraint conditions composed
using Boolean and and or operations. Both state-triggered constraint formulations are demonstrated in
example simulations using the successive convexification framework. The examples showcase a velocity-
triggered angle of attack constraint that is used to alleviate aerodynamic loads, and collision avoidance
constraint used to avoid large geological formations near the landing site. Notably, the velocity-triggered
angle of attack constraint demonstrates the ability of state-triggered constraints to introduce and rearrange
constraint phases in the solution, without resorting to combinatorial techniques. While the results presented
here and in [40] show promise for powered descent guidance applications, additional work is required to
improve the convergence behavior resulting from the inclusion of state-triggered constraints.
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18 Açıkmeşe, B. and Blackmore, L., “Lossless Convexification of a Class of Optimal Control Problems with Non-Convex Control
Constraints,” Automatica, Vol. 47, No. 2, 2011, pp. 341–347.
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