
The Crawling Phenomenon in Sequential Convex Programming

Taylor P. Reynolds and Mehran Mesbahi

Abstract— The paper examines the so-called crawling phe-
nomenon for a class of sequential convex programming al-
gorithms. These algorithms are designed to solve non-convex
optimization problems by using convex approximations, trust
regions and relaxations. The crawling phenomenon occurs when
the iterates of the algorithm get as close as permitted to each
other, yet these iterates are not close to a stationary point of the
original non-convex problem. It is shown that once the design
parameters for a general class of such iterative algorithms
are fixed, there are generic problem instances that lead to
the crawling phenomenon. A simple example and potential
remedies to address this phenomenon are also presented.

Index Terms— Non-convex optimization; sequential convex
programming; crawling phenomenon

I. INTRODUCTION

Solving non-convex optimization problems is difficult.
Alas, non-convex problems are pervasive in control synthesis
problems, and more generally, engineering system design.
Examples include optimal control problems with nonlinear
dynamics (represented as non-convex algebraic or differential
equality constraints), or problems that have non-convex con-
straints that cannot be “losslessly convexified” [1], [2], [3].
These problems are found in fields ranging from aerospace
guidance [4], [5], [6] and mechanical truss design [7] to
power grid optimization [8], and computer vision [9]. For
such non-convex optimization problems, sequential convex
programming (SCP) is a powerful framework with which
one can design algorithms that find the desired solution(s).
Other such techniques include nonlinear programming [10],
[11], sum of squares optimization [12], [13] and evolutionary
algorithms.

Sequential convex programming is a natural approach for
solving non-convex optimization problems; convex program-
ming is generally thought of as “easy” (from a computational
perspective due to the availability of interior point methods)
and the associated theoretical backing (such as strong dual-
ity) is well established [14], [15]. Different variations of SCP
techniques stem from the same idea: solve a sequence of
convex approximations to the original non-convex problem,
each time using the solution of a previous iteration’s convex
problem to improve the approximation. The main challenge
lies in how the convex approximations are formulated, what
structure is devised for measuring progress towards an opti-
mal solution and updating the approximations, and how all
of this lends itself to theoretical analysis.

This research has been supported by NASA grant NNX17AH02A SUP02
and NSERC grant PGSD3-502758-2017.

The authors are with the W.E. Boeing Department of Aeronau-
tics and Astronautics, University of Washington, Seattle, WA, USA.
{tpr6,mesbahi}@uw.edu

Likely the simplest class of SCP methods is that of se-
quential linear programming (SLP). Algorithms in this class
linearize all nonlinear functions about a current reference
solution to obtain a linear program. The linear program is
then solved (with a trust region) to obtain a new reference,
and the process repeats [16], [17]. From a computational
perspective, SLP became attractive early due to the matu-
rity of the simplex algorithm. However, over time solvers
for more general classes of convex optimization problems
have advanced to the point that restricting oneself to linear
programs to save computational resources is unnecessary (ex-
cept perhaps for extremely large problems). More generally,
difference of convex functions, or D.C. programming, is a
class of SCP methods [18]. The convex-concave procedure
introduced in [19] decomposes each non-convex inequality
constraint into a sum of convex and concave functions,
linearizing the concave part while leaving the convex part
intact. This procedure remains popular in modern applica-
tions, in particular for support vector machines and principal
component analysis in the field of machine learning [20].

Another important class of SCP methods is that of se-
quential quadratic programming (SQP). The collective works
of Han [21], Powell [22], [23], Boggs and Tolle [24], [25]
and Fukushima [26] exerted significant influence on the
early developments of SQP algorithms, and their impact
remains evident today. SQP methods approximate a non-
convex problem with a quadratic program by approximating
the Hessian of the non-convex problem’s Lagrangian at a
reference solution. The quadratic program is solved to obtain
a new reference solution, and the process repeats. SQP
methods are arguably among the most mature class of SCP
methods [27], [28].

The use of quadratic programs requires that all constraints
are affine in the solution variable. Many problems of interest
are, however, subject to nonlinear constraints (both convex
and non-convex). The class of SCP methods discussed herein
are therefore those that solve a more general convex problem
at each iteration (i.e., no a priori restriction to an LP or
QP). More importantly, we discuss algorithms that are of
trust region type and use slack variables to ensure that
each convex approximation is always feasible. This class
of SCP methods has been developed largely over the last
decade, and represents one of the most active areas of current
development [29], [30], [31], [32]. A subset of SLP and SQP
methods are contained within this class, and our discussion
holds for them as well.

The purpose of this paper is to demonstrate that this
general class of SCP algorithms is susceptible to what we
call the crawling phenomenon. The crawling phenomenon

is defined as slow progress towards a stationary point of
the non-convex problem when the algorithm is not close to
any such solution. We show that the crawling phenomenon
is a generic property of algorithms that use a Lagrangian-
like function to measure the accuracy of the convex approx-
imations at each iteration and update the trust region and
reference solution accordingly. Essentially, the trust region
and solution update rules that form a key component of
the theoretical convergence analysis induce the undesirable
crawling phenomenon. Arriving at a local minimum indeed
implies that adjacent iterates will be close together (in the
sense of their normed difference), but what we show is that
for a certain general class of SCP algorithms, the converse
does not necessarily hold.

This paper is organized as follows. First, we describe
the generic class of SCP algorithms, our nomenclature and
notation in §II. In §III we define the crawling phenomenon
and prove that algorithms in this class are susceptible to
it, followed by a simple example. Potential remedies for
avoiding the crawling phenomenon are discussed in §IV,
and §V offers concluding remarks.

II. SEQUENTIAL CONVEX PROGRAMMING

Consider the class of optimization problems of the form,

min
z

φ(z)

s.t. gi(z) ≤ 0, i ∈ Icvx

hi(z) ≤ 0, i ∈ Incvx

fj(z) = 0, j ∈ Encvx

(P)

where z ∈ Rnz , Icvx = {1, . . . ,mi}, Incvx = {mi +
1, . . . ,mi + ni} represent the indices of the convex and
non-convex inequality constraints and Encvx = {1, . . . , ne}
represents the indices of non-convex equality constraints. We
assume that each hi and fj are at least once differentiable
and, without loss of generality, that the cost function φ is
convex. To simplify the notation, we assume that any convex
(affine) equality constraints are represented by a pair of
convex inequality constraints. Problem P is typically referred
to as a nonlinear programming problem, but we shall refer
to it as the “original” problem. While there exist general
purpose solvers that are able to solve the original problem
(see, e.g., [10], [11]), we focus on iterative schemes that are
based on convex optimization.

At each iteration, an SCP method approximates the non-
convex constraints hi and fj with convex functions of the
solution variable of the form

h̄i(z, z̄) ≤ 0, i ∈ Incvx, (1a)
f̄j(z, z̄) = 0, j ∈ Encvx, (1b)

where z̄ ∈ Rnz is some reference. There are several choices
for h̄i: first-order Taylor series, second-order Taylor series
with (possibly approximated) positive semi-definite Hessian,
inner convex approximations, or any other convex function
that locally approximates the non-convex hi. The f̄j on the
other hand must be affine functions of z. The approximations
h̄i and f̄j are therefore local; their accuracy decreases as

z2

z1

‖z − z̄‖2 ≤ η

z̄
f1(z) = 0

f̄1(z, z̄) = 0

(a) F1 = ∅, see (4a).

z2

z1

z̄
f1(z) = 0

f̄1(z, z̄) = 0

g1(z) ≤ 0

g2(z) ≤ 0

(b) F2 = ∅, see (4b).

Fig. 1: A depiction of the two causes of artificial infeasibility.

‖z− z̄‖ increases. As a separate issue, consider the possible
scenario where φ and each gi are linear functions, and we
choose each h̄i to be the linearization of hi around z̄. In
this case, the resulting optimization problem is unbounded
below, a phenomenon referred to as artificial unboundedness.
To address the local nature of the approximations (1) and
to avoid artificial unboundedness, we add a trust region
constraint of the form,

‖z − z̄‖q ≤ η, q = {1, 2, ∞}, (2)

where η ∈ R++ is a positive trust region radius. We may then
construct the following convex approximation to the original
problem Problem P:

min
z

φ(z) (3a)

s.t. gi(z) ≤ 0, i ∈ Icvx (3b)
h̄i(z, z̄) ≤ 0, i ∈ Incvx (3c)
f̄j(z, z̄) = 0, j ∈ Encvx (3d)
‖z − z̄‖q ≤ η. (3e)

Problem 3 is not necessarily well-defined due to artificial
infeasibility that can arise in two forms. The following
independent cases, depicted in Figure 1, can happen

F1 = {z | (3c), (3d) and (3e) are satisfied} = ∅, (4a)
F2 = {z | (3b), (3c) and (3d) are satisfied} = ∅. (4b)

Artificial infeasibility can be avoided by adding so-called
virtual control to (3c) and (3d) as,

h̄i(z, z̄)− σi ≤ 0, σi ≥ 0 (5a)
f̄j(z, z̄)− νj = 0. (5b)

The vectors σ ∈ Rni
+ and ν ∈ Rne are added as solution vari-

ables, and the resulting augmented convex program assumes
the form,

min
z,σ,ν

φ(z) + λP (σ, ν)

s.t. gi(z) ≤ 0, i ∈ Icvx

h̄i(z, z̄)− σi ≤ 0, i ∈ Incvx

f̄j(z, z̄)− νj = 0, j ∈ Encvx

‖z − z̄‖q ≤ η,

(C)

where P : Rne × Rni → R++ is an exact positive-definite
penalty function and λ > 0 is a user-selected weight.

Typically λ � 1 to limit the use of virtual control only
to cases when it is required to avoid artificial infeasibility.

We shall refer to Problem C as a convex subproblem, and
its optimal solution as an iterate, denoted by (z∗, σ∗, ν∗).
We focus on the class of SCP algorithms that iteratively
solve Problem C and use the resulting iterate to update
z̄ and the value of η, based on some assessment of the
accuracy of the approximations (1). The resulting sequence
of solutions z̄ approaches a locally optimal solution of Prob-
lem P under certain conditions and assumptions. There have
been numerous papers that study convergence properties
of the such a setup, offering conditions/assumptions under
which convergence is guaranteed to various definitions of
minima [29], [30], [31], [32]. This paper does not discuss
whether convergence is achieved or not, but instead demon-
strates how the crawling phenomenon can affect the iterates
as they converge.

A. Trust Region Updates

Most trust region methods dynamically update the value
of η at each iteration according to a set of rules. These rules
are designed to improve convergence and facilitate formal
proofs, and use a performance metric that is a function of
(z∗, σ∗, ν∗) to do so. The performance metric provides key
feedback to the iterative process and guides convergence. To
introduce two common performance metrics, we first define
the functions,

J(z) = φ(z) + λP
(
h(z), f(z)

)
, (6a)

L(z) = φ(z) + λP
(
h̄(z, z̄), f̄(z, z̄)

)
, (6b)

where h(z) ∈ Rni and f(z) ∈ Rne are the concatenations of
the non-convex constraints from Problem P , and similarly
for h̄(z, z̄) and f̄(z, z̄). The functions in (6) can be thought
of as Lagrangian-like functions for the original problem and
the convex subproblem, respectively.

The first performance metric is simply the relative error

ρ =
J(z∗)− L(z∗)

L(z∗)
, (7)

which measures the normalized difference between the func-
tions in (6). The ideal value of the relative error is zero. A
second performance metric is the relative decrease

ρ =
J(z̄)− J(z∗)

J(z̄)− L(z∗)
, (8)

which measures how well the convex subproblem predicts
the change in (6a) at the new iterate. The ideal value of
the relative decrease is one. Once chosen, the scalar-valued
performance metric ρ is used to grow, shrink, or maintain
the radius of the trust region. The parameter ρ is also
used to reject an iterate z∗ in certain cases. If ρ indicates
poor prediction, the same convex approximation is kept (by
rejecting z∗) but the trust region is shrunk, and the convex
subproblem is re-solved. Note that we can assume, without
loss of generality, that φ(z) > 0 for any z. Hence (7)
and (8) can also be represented using absolute values in the
numerator and denominator without affecting the discussion.

In order to decide which case we are in for a given
iteration (accept/reject, shrink/keep/grow), the user defines
three real numbers ρ0, ρ1, ρ2 ∈ (0, 1) that split the real
number line into four segments. For each iterate, the value
of ρ lies in one of these four segments, and the trust region
and reference solution are updated according to the rules in
Figure 2. The constants α, β > 1 and ηl > 0 are user-selected
shrink/growth rates and lower bound on the trust region
radius. Definition 2.1 defines the class of SCP algorithms
studied herein.

Definition 2.1: An algorithm for solving Problem P be-
longs to the class AC if it iteratively solves Problem C and
uses the performance metric (7) or (8) in conjunction with the
appropriate update rules in Figure 2. Moreover, to denote the
dependence of this class of algorithms on a set of parameters
Π, we write AC(Π).

Note that in our setup, the set Π in Definition 2.1 is
composed of parameters such as ρ0, ρ1, ρ2, α, β, ηl, P ,
λ and q, but not the initial reference and trust region size.

As a brief technical aside, the denominators in (7) and (8)
must be verified to be non-zero before computing the value
of ρ. In the case of (7), the condition φ(z) > 0 for all feasible
z is sufficient. In the case of (8), a zero denominator actually
implies that the iterations can be terminated, since L(z∗) ≤
L(z̄) = J(z̄) (note that this implies the denominator is
always nonnegative). If J(z̄)− L(z∗) = 0, then the optimal
solution found by solving Problem C is exactly the reference
solution, and the iterations can be stopped [30].

III. THE CRAWLING PHENOMENON

An algorithm exhibits the crawling phenomenon when it
is forced to take incrementally smaller steps, as measured by
‖z∗ − z̄‖q , for an iterate z∗ that is not close to a stationary
point of the original problem. This section explores the
relationship between the crawling phenomenon and the class
of SCP algorithms AC .

A. The Relative Error Case

Consider the sub-class of algorithms Ae
C ⊂ AC that use the

relative error (7) as the performance metric. From Figure 2,
any algorithm of this type will shrink the trust region if ρ ≥
ρ1, and reject the iterate if ρ ≥ ρ2. Hence the trust region is
shrunk if

J(z∗)− L(z∗)

L(z∗)
≥ ρ1 ⇒ J(z∗) ≥ (1 + ρ1)L(z∗). (9)

Using (6) this can be rewritten as

P
(
h(z∗), f(z∗)

)
≥ ρ1φ(z∗)

λ
+(1+ρ1)P

(
h̄(z∗, z̄), f̄(z∗, z̄)

)
.

(10)
If inequality (10) is satisfied, we find ourselves in the two
top-right cases in Figure 2: z∗ is either accepted or rejected,
and the trust region is shrunk. A sufficient condition for
the iterate to be rejected is P

(
h(z∗), f(z∗)

)
≥ φ(z∗)

λ +
2P
(
h̄(z∗, z̄), f̄(z∗, z̄)

)
, which states that the distance to the

feasible set of Problem P for all iterates rejected by an algo-
rithm in Ae

C is at least the sum of the (weighted) original cost

ρ0 ρ1 ρ2

R

ρ < ρ0 ρ ∈ [ρ0, ρ1) ρ ∈ [ρ1, ρ2) ρ ≥ ρ2

η ← η/α
z̄ ← z̄

η ← η/α
z̄ ← z∗

η ← η
z̄ ← z∗

η ← βη
z̄ ← z∗

η ← βη
z̄ ← z∗

η ← η
z̄ ← z∗

η ← η/α
z̄ ← z∗

η ← η/α
z̄ ← z̄

Rel. decrease

Rel. error

η = max{η, ηl}

Fig. 2: Update rules for two different performance metrics of a general sequential convex programming algorithm.

and twice the distance to the feasible set of Problem 3. Stated
another way, the distance to the feasible set of Problem P
for all iterates accepted by the algorithm is bounded above
by the same quantity.

Suppose now that the reference z̄ is feasible for Prob-
lem P , in the sense that P

(
h(z̄), f(z̄)

)
= 0. This implies

that z̄ is a feasible point for Problem 3 as well. Thus
the optimal solution of Problem C will not use any virtual
control provided that λ is large enough.1 The solution z∗ will
therefore satisfy h̄(z∗, z̄) ≤ 0 and f̄(z∗, z̄) = 0. If h̄(·, z̄)
(resp. f̄(·, z̄)) does not adequately capture the behaviour
of h(·) (resp. f(·)), then inequality (10) will be satisfied.
This implies that for each instance of Problem P , for every
feasible z̄ there is an effective maximum trust region size that
is implicitly defined by λ, the method used to “convexify”
the original problem and the value of the original cost. This
effective trust region can be quite small when, for example,
f(z) has a large Lipschitz constant in the set defined by the
trust region. Figure 3 provides a depiction of this scenario;
and this discussion leads to the following result.

Lemma 3.1: Given an instance of Problem P and a ref-
erence solution z̄ that is feasible for Problem P , the iterate
z∗ of any algorithm in the sub-class Ae

C(Π) will be used to
shrink the trust region if

z∗ ∈
{
z
∣∣ P (h(z), f(z)

)
≥ ρ1φ(z)

λ

}
. (11)

B. The Relative Decrease Case

Consider now the sub-class of algorithms Ad
C ⊂ AC that

use the relative decrease (8) as the performance metric. In
this case, the trust region is shrunk if ρ < ρ1 and rejected
when ρ < ρ0. Using (6), the case ρ < ρ1 can be rewritten as,

P
(
h(z∗), f(z∗)

)
> 1−ρ1

λ (φ(z̄)− φ(z∗))

+ (1− ρ1)P
(
h(z̄), f(z̄)

)
+ ρ1P

(
h̄(z∗, z̄), f̄(z∗, z̄)

)
.
(12)

If inequality (12) is satisfied, we find ourselves in the two
bottom-left cases in Figure 2: the iterate z∗ is either accepted
or rejected, and the trust region is shrunk. A sufficient
condition for the iterate to be rejected is

P
(
h(z∗), f(z∗)

)
> φ(z̄)−φ(z∗)

λ + P
(
h(z̄), f(z̄)

)
. (13)

1There exists a non-empty feasible set that uses no virtual control,
solutions that are not in this set necessarily increase the cost for large values
of λ.

z2

z1

cost lines

f(z) = 0

f̄(z, z̄) = 0

current trust region

z̄

effective max
trust region

Fig. 3: The effective maximum trust region size for q = 2
that induces the crawling phenomenon. The green circle is
the largest trust region such that (11) or (14) is not satisfied
at the resulting iterate. The red trust region would be shrunk
until it is a subset of the green trust region.

The inequality (13) states that the distance to the feasible
set of Problem P for any accepted iterate is bounded above
by the (weighted) decrease in original cost plus the distance
between z̄ and the feasible set of Problem P .

Suppose now that z̄ is feasible for the original problem. By
the same logic described in §III-A, we know that the solution
z∗ will satisfy h̄(z∗, z̄) ≤ 0 and f̄(z∗, z̄) = 0. In this case the
final two terms in the right hand side of (12) are zero, as is the
second term on the right hand side of (13). We are thus led
to the existence of a maximum effective trust region size that
is implicitly defined by λ, the method used to “convexify”
the original problem and the largest possible reduction in the
original cost within the feasible set of Problem 3.

Remark 3.2: The inequality (13) also reveals that if the
reference z̄ is feasible for Problem P , then any accepted
iterate must (strictly) decrease the original cost. A similar
fact was noted for SLP in [17], and (13) shows that it holds
for the more general class of algorithms Ad

C .
Lemma 3.3: Given an instance of Problem P and a ref-

erence solution z̄ that is feasible for Problem P , the iterate
z∗ of any algorithm in the sub-class Ad

C(Π) will be used to
shrink the trust region if

z∗ ∈
{
z
∣∣ P (h(z), f(z)

)
> 1−ρ1

λ (φ(z̄)− φ(z))
}
. (14)

The main result of this discussion is summarized in
Theorem 3.4. We note that Theorem 3.4 states that the
crawling phenomenon may be observed, while Lemmas 3.1
and 3.3 indicate when it is observed.

Theorem 3.4: Given an instance of Problem P , any al-
gorithm in the class AC(Π) can exhibit the crawling phe-
nomenon.

C. A Simple Example
This section provides a simple example that exhibits the

crawling phenomenon. Consider the following non-convex
optimization problem in the variable z = (z1, z2) ∈ R2,

min
−2≤z≤2

z1 + z2 (15a)

s.t. g1(z) = −z2 − 4
3z1 − 2

3 ≤ 0 (15b)

f(z) = z2 − z4
1 − 2z3

1 + 1.2z2
1 + 2z1 = 0 (15c)

Following the procedure outlined in §II, we can convex-
ify Problem 15 in the form of Problem C by using a reference
z̄ ∈ R2 and virtual control ν ∈ R. The parameters used for
this particular example are an initial trust region of η = 0.1,
an initial reference of z̄ = (1.5, 1.5), a penalty function
P (ν) = |ν| and λ = 400. The values used to update the trust
region size are

(
ρ0, ρ1, ρ2

)
= (0, 0.1, 0.9) and

(
ρ0, ρ1, ρ2) =

(0.1, 0.9, 1.0) for the relative decrease and relative error
respectively, and α = 1.5, β = 2.0, q = 2. Figure 4
shows the resulting sequence of iterates for both performance
metrics, as well as the value of ρ versus the iteration number.
Figures 4a and 4b demonstrate the crawling phenomenon;
progress towards a solution slows down considerably once
the curvature of the equality constraint increases towards the
bottom, and Figure 4c confirms that this is a result of a
shrinking trust region. In both cases, Figure 4c reveals a cycle
that is reached whereby the approximation accuracy slowly
worsens until the trust region is shrunk (the sharp changes
in ρ). This is a result of the nonlinear equality constraint
bending away from the affine approximation, eventually
leading to (11) or (14).

It is important to resist the temptation to draw overly gen-
eral conclusions from this simple example. For other choices
of initial reference z̄, the crawling phenomenon is avoided.
For example, convergence to the local minimum from an
initial reference in the (infeasible) shaded gray region is
quite rapid, often terminating in ten or fewer iterations.
There are, however, distinct regions in the upper-middle and
upper-right of the area plotted in Figure 4 from which the
phenomenon is observed. This is inline with Theorem 3.4,
which states only that the crawling phenomenon can happen.
Moreover, it is clear that for this example the crawling
phenomenon is occurring. This is only obvious because we
know exactly where each minimum is (i.e., we can plot the
cost lines, constraints and iterates). The trouble, in general,
is that it is not possible to know (or plot) the solutions
to Problem P . Algorithms in the class AC are designed to
find these solutions, often for the first time, and so it may
be unknown whether slow progress means one is close to a
stationary point, or if it is the crawling phenomenon.

IV. POSSIBLE REMEDIES
The following scheme can be used to identify if the

crawling phenomenon is occurring. If the algorithm at it-
eration k > 3: (i) chooses to shrink the trust region, (ii)

accepted iterates k − 1, k − 2, k − 3, (iii) ρ ∈ [ρlb, ρub]
for iterates k − 1, k − 2, k − 3 and (iv) cases (i)-(iii) have
been met twice, then the crawling phenomenon is occurring.
The interval [ρlb, ρub] is a subset of [ρ1, ρ2] for the relative
error and of [ρ0, ρ1] for the relative decrease. Based on
Theorem 3.4, we must turn to algorithms that do not belong
to the class AC if we are to avoid the crawling phenomenon
once it has been detected. In general, algorithms that belong
to AC(Π) are quite good at quickly reaching feasibility
for Problem P2. Hence we may propose hybrid algorithms
that are formed by combining one algorithm in the class AC
with a second that is not, but which assumes a feasible initial
guess for the original problem. To illustrate this capability,
when the crawling phenomenon is detected in the example
from §III-C, the algorithm is switched to the feasible SQP
method described in [33]. This algorithm guarantees that all
subsequent iterates are feasible for Problem P , but is not of
trust region type, and does not convexify the problem in the
same way as in Problem C, hence does not belong to the class
AC . The resulting iterates of this hybrid algorithm are shown
in Figure 5. One can see that the crawling phenomenon, once
detected, is avoided, and the overall number of iterations is
greatly reduced. This hybrid algorithm effectively blends the
advantages of both algorithms.

V. CONCLUSIONS

This paper has shown that all SCP algorithms that belong
to the class AC are susceptible to the crawling phenomenon.
We have given an algebraic description of when two sub-
classes of AC will exhibit the behaviour, and offered geomet-
ric interpretations. As SCP algorithms become increasingly
popular, it is important to recognize their limitations. At
the same time, knowledge of said limitations provides an
opportunity to design better algorithms if needed. The use of
hybrid algorithms was shown to be a promising candidate to
mitigate the effect of the crawling phenomenon in sequential
convex programming.

ACKNOWLEDGMENT

The authors thank Miki Szmuk, Danylo Malyuta and
Behçet Açıkmeşe for many valuable discussions on the
subject of sequential convex programming.

REFERENCES

[1] B. Açıkmeşe and L. Blackmore, “Lossless Convexification of a Class
of Optimal Control Problems with Non-Convex Control Constraints,”
Automatica, vol. 47, no. 2, pp. 341–347, 2011.

[2] L. Blackmore, B. Açıkmeşe, and J. M. Carson III, “Lossless Convexifi-
cation of Control Constraints for a Class of Nonlinear Optimal Control
Problems,” Systems and Control Letters, vol. 61, no. 8, pp. 863–870,
2012.

[3] M. W. Harris and B. Açıkmeşe, “Lossless Convexification of Non-
Convex Optimal Control Problems for State Constrained Linear Sys-
tems,” Automatica, vol. 50, no. 9, pp. 2304–2311, 2014.

[4] M. Szmuk, T. P. Reynolds, and B. Açıkmeşe, “Successive Convexi-
fication for Real-Time 6-DoF Powered Descent Guidance with State-
Triggered Constraints,” arXiv e-prints, 2018. arXiv:1811.10803.

2Prior to feasibility, the solutions of Problem C are the closest point in
the trust region to the projection of z̄ onto the feasible set of Problem 3. In
the relative decrease case, in fact, one can show that J(z̄) > J(z∗).

(a) Relative error solution. (b) Relative decrease solution. (c) The performance metric ρ saturated to the
[0, 1] interval solely for plotting. Coloured regions
correspond to Figure 2.

Fig. 4: Iterates of two algorithms from AC that show the crawling phenomenon for Problem 15.

(a) Relative error solution. (b) Relative decrease solution.

Fig. 5: Iterates of two hybrid algorithms that avoid the crawling phenomenon for Problem 15.

[5] U. Lee and M. Mesbahi, “Constrained Autonomous Precision Landing
via Dual Quaternions and Model Predictive Control,” Journal of
Guidance, Control, and Dynamics, vol. 40, no. 2, pp. 292–308, 2017.

[6] X. Liu and P. Lu, “Solving Nonconvex Optimal Control Problems by
Convex Optimization,” Journal of Guidance, Control, and Dynamics,
vol. 37, no. 3, pp. 750–765, 2014.

[7] A. Beck, A. Ben-Tal, and L. Tetruashvili, “A Sequential Parametric
Convex Approximation Method with Applications to Nonconvex Truss
Topology Design Problems,” Journal of Global Optimization, vol. 47,
pp. 29–51, 2010.

[8] W. Wei, J. Wang, N. Li, and S. Mei, “Optimal Power Flow of
Radial Networks and Its Variations: A Sequential Convex Optimization
Approach,” IEEE Transactions on Smart Grid, vol. 8, no. 6, pp. 2974–
2987, 2017.

[9] H. Jiang, M. S. Drew, and Z.-N. Li, “Matching by Linear Program-
ming and Successive Convexification,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 29, no. 6, pp. 959–975, 2007.

[10] P. E. Gill, W. Murray, and M. H. Wright, Practical Optimization.
Academic Press, Inc., 1981.

[11] J. Nocedal and S. J. Wright, Numerical Optimization. New York, NY:
Springer Science & Business Media, 2006.

[12] P. A. Parrilo, “Semidefinite Programming Relaxations for Semialge-
braic Problems,” Math. Program., Ser. B, vol. 96, pp. 293–320, 2003.

[13] G. Blekherman, P. A. Parrilo, and R. R. Thomas, eds., Semidefinite
Optimization and Convex Algebraic Geometry. SIAM, 2012.

[14] R. T. Rockafellar, Convex Analysis. Princeton University Press, 1970.
[15] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge, UK:

Cambridge University Press, 2004.
[16] R. H. Byrd, N. I. M. Gould, J. Nocedal, and R. A. Waltz, “An

Algorithm for Nonlinear Optimization Using Linear Programming and
Equality Constrained Subproblems,” Math. Program., Ser. B, vol. 100,
pp. 27–48, 2004.

[17] F. Palacios-Gomez, L. Lasdon, and M. Engquist, “Nonlinear Opti-

mization by Successive Linear Programming,” Management Science,
vol. 28, no. 10, pp. 1106–1120, 1982.

[18] R. Horst and N. V. Thoai, “Dc programming: Overview,” Journal of
Optimization Theory and Applications, vol. 103, no. 1, pp. 1–43, 1999.

[19] A. Yuille and A. Rangaranjan, “The Concave-Convex Procedure
(CCCP),” in Advances in Neural Information Processing Systems,
pp. 1033–1040, 2002.

[20] G. R. Lanckriet and B. K. Sriperumbudur, “On the Convergence of
the Concave-Convex Procedure,” in Advances in Neural Information
Processing Systems 22, pp. 1759–1767, 2009.

[21] S. P. Han, “A Globally Convergent Method for Nonlinear Program-
ming,” Journal of Optimization Theory and Applications, vol. 22,
no. 3, pp. 297–309, 1977.

[22] M. J. Powell, “Algorithms for Nonlinear Constraints that use La-
grangian Functions,” Mathematical Programming, vol. 14, no. 1,
pp. 224–248, 1978.

[23] M. J. Powell and Y. Yuan, “A Recursive Quadratic Programming Algo-
rithm that uses Differentiable Exact Penalty Functions,” Mathematical
Programming, vol. 35, pp. 265–278, 1986.

[24] P. T. Boggs and W. J. Tolle, “A Strategy for Global Convergence in
a Sequential Quadratic Programming Algorithm,” SIAM Journal of
Numerical Analysis, vol. 26, no. 3, pp. 600–623, 1989.

[25] P. T. Boggs and W. J. Tolle, “Sequential Quadratic Programming,”
Acta Numerica, vol. 4, pp. 1–52, 1996.

[26] M. Fukushima, “A Successive Quadratic Programming Algorithm
with Global and Superlinear Convergence Properties,” Mathematical
Programming, vol. 35, pp. 253–264, 1986.

[27] P. E. Gill, W. Murray, and M. A. Saunders, “SNOPT: An SQP
Algorithm for Large-Scale Constrained Optimization,” Siam Review,
vol. 47, no. 1, pp. 99–131, 2005.

[28] J. T. Betts and W. P. Huffman, “Path-Constrained Trajectory Opti-
mization using Sparse Sequential Quadratic Programming,” Journal
of Guidance, Control, and Dynamics, vol. 16, pp. 59–68, Jan. 1993.

[29] Y. Mao, M. Szmuk, and B. Açıkmeşe, “Successive Convexification of
Non-Convex Optimal Control Problems and its Convergence Proper-
ties,” in IEEE Conference on Decision and Control, (Las Vegas, NV),
2016.

[30] Y. Mao, M. Szmuk, and B. Açıkmeşe, “Successive Convexification: A
Superlinearly Convergent Algorithm for Non-convex Optimal Control
Problems,” arXiv e-prints, 2018. arXiv:1804.06539.

[31] R. Bonalli, A. Bylard, A. Cauligi, T. Lew, and M. Pavone, “Trajectory
Optimization on Manifolds: A Theoretically-Guaranteed Embedded

Sequential Convex Programming Approach,” in Robotics: Science and
Systems, June 2019.

[32] R. Bonalli, A. Cauligi, A. Bylard, and M. Pavone, “GuSTO: Guar-
anteed Sequential Trajectory Optimization via Sequential Convex
Programming,” in IEEE International Conference on Robotics and
Automation (ICRA), 2019.

[33] C. T. Lawrence and A. L. Tits, “A Computationally Efficient Feasible
Sequential Quadratic Programming Algorithm,” SIAM Journal on
Optimization, vol. 11, no. 4, pp. 1092–1118, 2003.

	INTRODUCTION
	SEQUENTIAL CONVEX PROGRAMMING
	Trust Region Updates

	THE CRAWLING PHENOMENON
	The Relative Error Case
	The Relative Decrease Case
	A Simple Example

	POSSIBLE REMEDIES
	CONCLUSIONS
	References

