
A Real-Time Algorithm for Non-Convex

Powered Descent Guidance

Taylor P. Reynolds∗, Danylo Malyuta∗,

Mehran Mesbahi†, Behçet Açıkmeşe†,

Dept. of Aeronautics & Astronautics, University of Washington, Seattle, WA 98195, USA

and

John M. Carson III‡

NASA Johnson Space Center, Houston, TX 77058, USA

The on-board solution of constrained optimal control problems is a key technology for future
entry, descent and landing systems. The constraints that must be satisfied to enable advanced
navigation routines require powered descent guidance solutions that consider the coupled ro-
tation and translation of the vehicle, leading to a non-convex 6-degree-of-freedom powered
descent guidance problem. This paper builds on previous work and refines a successive convex-
ification algorithm to be compatible with common flight code requirements. We highlight the
aspects of each algorithmic step that are especially relevant for maximizing the computational
performance. A case study is presented using the most general landing problem for which
the optimal solution is theoretically known and that contains both rotational and translational
states. We demonstrate that the real-time implementation achieves less than 1% sub-optimality
with runtimes on the order of 100 ms on a single 3.2 GHz Intel i5 core with 8 GB of RAM.
These results suggest that the same design methodology applied to the full 6-degree-of-freedom
landing problem is capable of producing fast enough runtimes to be viable for future entry,
descent and landing systems.

I. Introduction

Powered Descent Guidance (PDG) is the terminal phase of the entry, descent and landing sequence in which
a lander uses its rocket engine(s) and, optionally, its reaction control system to maneuver from an initial state
to a soft touchdown. Powered descent is a fundamental technology for safe and precise landing, and the search
for a general and reliable PDG solution has been of increasing importance for extraterrestrial spaceflight. Space
launch continues to be expensive, ranging from above $10,000 kg−1 during the Space Shuttle era to a current low
of $3,000 kg−1 for the Falcon 9,1 with high costs predicted for the Space Launch System.2 To help reduce launch
mass (and therefore mission cost), PDG solutions typically seek to minimize the use of propellant. For example,
there is evidence that the (sub-optimal) polynomial guidance algorithm used during the Apollo program could
come within 16 kg of the minimum fuel usage3 for that problem.

Future space missions have a strong need for a PDG algorithm that satisfies the following requirements.4 To
account for lander pointing requirements imposed by sensing architectures, the algorithm must be capable of
handling a large suite of continuous and discrete input and state constraints. Consequently, trajectory planning
must at least consider the 6-degree-of-freedom (DoF) rigid body rotation and translation of the vehicle. Second,
future robotic landers will have to navigate challenging environments such as volcanic vents and jagged blades
of ice,5,6 while human missions are likely to be preceded by cargo missions and will require that landings occur
in close proximity.7 To support hazard avoidance and real-time intelligent re-planning, the algorithm must have
predictable convergence behaviour and be real-time capable on computationally constrained hardware. Lastly,
the algorithm must function autonomously so that it can be used by both robotic and crewed missions. Motivated
by the presence of water ice, future missions to the Moon in particular will target its south pole.8 The low tilt

∗Ph.D. Candidate, AIAA Student Member {tpr6,danylo}@uw.edu
†Professor, AIAA Associate Fellow, {mesbahi,behcet}@uw.edu
‡SPLICE Principal Investigator, AIAA Associate Fellow, john.m.carson@nasa.gov

1 of 24

American Institute of Aeronautics and Astronautics

of the Moon’s spin axis creates extreme light-dark lighting conditions at the poles, further emphasizing the need
for a fully automated sensor-based PDG sequence.9

The first step towards a real-time constrained 6-DoF PDG algorithm was taken during the Apollo era when the
analytic solution to a fuel-optimal 1-DoF purely vertical descent was found by Meditch.10 Around the same time,
Lawden formulated the necessary conditions of optimality for a more general fuel-optimal 3-DoF problem that
considers the mass and translational dynamics.11,12 However, the computational resources required to solve the
necessary conditions (e.g., using shooting methods) were not yet readily available. More recently, D’Souza found
closed-form solutions to the necessary conditions for a mixed minimum-energy minimum-time unconstrained 3-
DoF problem.13 Using modern software, Topcu, Casoliva and Mease compared the attainable solution quality
for the fuel-optimal 3-DoF problem to the necessary conditions of optimality derived by Lawden.14,15 Their
focus was not to develop a real-time PDG algorithm, as they used nonlinear programming methods that do
not meet the previously mentioned computational requirements. A real-time capable algorithm that solves the
3-DoF necessary conditions using nonlinear root finding techniques has been developed by Lu.16,17 However,
this algorithm has limited ability to enforce state constraints that may be required by future missions.

Over the past 40 years, research in numerical optimization has developed a family of interior point methods that
can solve optimization problems to global optimality in polynomial time and with guaranteed convergence.18,19

These much-needed properties for an on-board PDG algorithm stand in stark contrast to both shooting and
nonlinear programming. The only limitation, roughly speaking, is that problems must be convex .20 However,
Açıkmeşe and Ploen recognized that the fuel-optimal 3-DoF problem with several important constraints like the
approach angle and rocket engine thrust lower- and upper-bounds can be expressed as a convex optimization
problem and solved to global optimality.21 The method, termed lossless convexification, was the first to solve the
3-DoF problem with meaningful constraints in a fashion suitable for robust on-board implementation. Over the
course of the next decade, the method was expanded to handle fairly general non-convex input sets,22 minimum-
error landing and thrust pointing constraints,23–25 classes of affine and quadratic state constraints,26–28 classes
of nonlinear (mixed-integer) dynamics,29 and even certain binary constraints without resorting to mixed-integer
programming.30,31 In principle, all lossless convexification results are real-time implementable as they require
solving one or a (small) bounded sequence of problems via Second-Order Cone Programming (SOCP). Fast
and efficient SOCP solvers that use only static memory allocation are available.32–34 As an added benefit, the
solvability of 3-DoF problem using lossless convexification is guaranteed anywhere within a well-defined convex
set that can be computed during mission design.35–37

However, a major limitation inherent to any 3-DoF PDG algorithm is that the computed trajectory only
respects translation dynamics and constraints related to either translation or the thrust vector. 3-DoF PDG
methods do not model attitude dynamics, and instead assume that the attitude is controlled by a much faster
inner control loop. More importantly, 3-DoF methods cannot produce solutions that are guaranteed to respect
sensing requirements such as line-of-sight constraints for vehicle-mounted sensors. Even for missions where such
constraints are “mild”, an extensive simulation campaign is required to validate that the 3-DoF trajectories are
executable by a fundamentally 6-DoF lander system.4 For the aforementioned future missions where sensing
and guidance are tightly coupled, 3-DoF solutions are likely out of the question without considerable backstage
hand-tuning and edge-case handling efforts. Thus it is well motivated to seek a real-time algorithm for 6-DoF
PDG that does not compromise the benefits of the lossless 3-DoF solution (i.e., speed, guaranteed convergence,
and feasibility) while simultaneously providing the benefit of explicit feasibility with respect to the full 6-DoF
dynamics and coupled guidance-navigation constraints.

Sequential Convex Programming (SCP) emerged as the most natural solution when transitioning from a fully
convex 3-DoF problem to a 6-DoF problem in which some non-convexity is present. As a special case of a
trust region method, SCP iteratively solves a convex approximation of the original optimal control problem, and
updates the approximation as new solutions are obtained.18 This permits the use of “heritage” SOCP solvers
developed for 3-DoF PDG, and the balance of the algorithm design is used to ensure that the SCP iterations
converge to a local optimum of the non-convex 6-DoF problem. In the context of fuel-optimal 6-DoF PDG, SCP
methods have been used to handle: aerodynamic lift and drag; thrust slew-rate constraints;38 free ignition time;
state-triggered constraints that model discrete decisions such as velocity-based angle-of-attack constraints;39 and
compound (i.e., and/or) state-triggered constraints40 such as line of sight constraints that are active only within
pre-specified slant range bands.41,42 Collectively, these works show that the constraint satisfaction requirements
of future spaceflight missions can be handled via SCP-based 6-DoF PDG algorithms.

Several state-of-the-art SCP algorithms for trajectory generation have emerged in the past 5 years. These
are: Penalized Trust Region (PTR),39,41 successive convexification (SCvx),43–45 TrajOpt,46 GuSTO,47,48 and
ALTRO.49 The trust region size in PTR is a solution variable whose magnitude is penalized in the cost, whereas

2 of 24

American Institute of Aeronautics and Astronautics

SCvx and GuSTO enforce hard trust regions with outer-loop update schemes. Similar work was done by Liu and
Lu for the specific case of concave state constraints, albeit with a trust region that is not updated.50 TrajOpt
updates the trust region size, but enforces only soft constraints and no dynamics. ALTRO is a new algorithm that
alternates between augmented Lagrangian iterative LQR to deal with nonlinear dynamics directly, and active-set
projection to satisfy constraints. Beyond these “generalized” solution methods, SCP has been used to solve a
wide range of aerospace guidance problems.51–54 In light of our history as the primary developers of the PTR
method, this paper explores the real-time capability of the PTR method specifically for PDG.

The real-time capability of the PTR method for other applications has been tested on several occasions. Szmuk
et al. have shown that PTR is able to solve difficult quadrotor path planning problems (including obstacle
avoidance and acrobatic flips) in less than 100 ms running on a 1.7 GHz Intel Atom processor of an embedded
Intel Joule platform.55,56 More difficult tasks such as flying through hoops and cooperatively transporting a
beam while avoiding obstacles were solved in less than one second.57 Beyond these real-world tests of on-board
PTR, the real-time properties of the method and the effect of discretization were also analyzed in simulation.58,59

Ultimately, an SCP based method is a sequence of solutions to convex optimization problems and, in the case
of PTR, these problems are SOCPs. In assessing the real-time capability of PTR it is therefore appropriate
to consider existing work on the real-time solution of single-SOCP optimization problems. In the context of
3-DoF PDG, a 7-flight 3-year flight test campaign aboard the Masten Space Systems Xombie sounding rocket
demonstrated that the on-board solution of an SOCP problem is feasible on spaceflight processors.60–63 The
tested algorithm, G-FOLD, is based on the theory of lossless convexification and was able to compute landing
divert trajectories in 100 ms on a 1.4 GHz Intel Pentium M processor. Moreover, Dueri et al. have shown that the
same algorithm can achieve runtimes of less than 700 ms on the radiation-hardened BAE RAD750 processor.33

The modern paradigm of real-time optimization is to use customized solvers, wherein problem structure is hard-
coded into the solution process by an offline code generator.32,33,64 Well-known examples include CVXGEN and
FORCES.65–68 The majority of existing work on real-time optimization is found in the model predictive control
(MPC) literature, where closed-loop feedback is achieved by (generally) calling an optimizer as fast as the desired
execution frequency of the controller. In this context, execution frequencies for linear and quadratic optimization
problems in the kHz-MHz range are possible, and have been applied to electrical drives and an atomic force
microscope.69,70 MPC has also been used on-board autonomous race cars, achieving re-solve rates of 50 Hz
for miniature cars on an embedded 1.7 GHz ARM A9 chip,71 and 20 Hz for a life-size car on a 2.1 GHz Intel
i7-3612QE.72

MPC strategies have been proposed for 6-DoF PDG.73 However, the MPC paradigm of constantly re-solving an
optimization problem to make feedback control decisions is in conflict with the use of classical feedback control
architectures in space missions and can pose constraint feasibility problems. To provide the required 6-DoF PDG
capability while minimally impacting heritage guidance and control architectures, we propose that guidance
algorithms solve for a single, complete, trajectory from the spacecraft’s current state all the way to the landing
site. The vehicle would subsequently track this trajectory using existing feedback control architectures. Given
the real-time capability, new trajectories can be found as-needed (e.g., during landing site re-targeting for hazard
avoidance), but re-solving is not a fundamental requirement of our approach. The objective of “real-time PDG”
is therefore that a single solution for a complete 6-DoF PDG trajectory is computable in a short enough time
span on spaceflight hardware so as to be implementable on-board a spacecraft.

A. Primary Contribution

The primary contribution of this paper is to cover the major design aspects of a real-time capable PTR-based
PDG algorithm. We discuss the analytic transformation of the desired optimization problem into a sequence
of standard form SOCP problems, highlighting the influence of certain parameters and each type of constraint
on the resulting problem size and solution time. We present a hard-coded transcription of the optimization
problem for use with a flight-proven SOCP solver referred to as BSOCP.33 Unlike previous work on the 6-DoF
PDG problem,39–42 we only use static memory allocation, and ensure that our methodology and resulting code
is compatible with common flight code requirements.74 As a numerical demonstration, we use a simplified in-
plane powered descent problem with independent thrust and torque inputs, for which a theoretically optimal
solution is available.75 The latter qualification is key for assessing the optimality that is achieved by our real-
time implementation, and is not available for any other PDG problem that considers the attitude of the vehicle.
Despite having fewer states, the dynamics and constraints of this simpler problem capture important aspects of
the dynamics present in 6-DoF PDG problems. Our secondary contribution is therefore to compare the solution
obtained with the PTR method to this known optimum. This provides valuable insight into the level of sub-
optimality in a PTR-based 6-DoF PDG solution. Our third contribution is to provide detailed timing information

3 of 24

American Institute of Aeronautics and Astronautics

Figure 1: Illustration of the steps in the PTR algorithm. The most time consuming step is highlighted in red
and involves solving a convex SOCP problem.

as a function of the discretization density and a sensitivity analysis for three algorithm metrics as a function of
key design parameters. Our findings support that the PTR-based 6-DoF PDG algorithm is a real-time capable
algorithm for next generation entry, descent and landing systems.

This paper is organized as follows. First, §II presents the steps to produce an algorithm that is both capable of
solving non-convex optimization problems and is conducive to a real-time implementation. An overview of the
algorithm shows that there are three primary steps: initialization, convexification, and the solve step that are
outlined in §II.B, §II.C and §II.D respectively. Next, §III provides a planar landing case study that demonstrates
how the algorithm is constructed using these steps, in addition to the computational and numerical performance
that can be obtained. Lastly, §IV offers concluding remarks.

II. Considerations for Real-Time Implementation of Non-Convex Problems

In this section, we present a general methodology for developing real-time implementations to solve non-convex
optimal control problems of the form:

min
u(·),p

φ
(
x(tf), p

)
subject to: ẋ(t) = f(x, u, p),

H0x(t0) = xic, Hfx(tf) = xf,

gi(x, u, p) ≤ 0, i ∈ Ic := {1, . . . , nc},

(Problem 1)

where x(t) ∈ Rnx is a continuous-time state vector, u(t) ∈ Rnu is a continuous-time input vector and p ∈ Rnp is a
parameter vector. The scalar-valued functions gi : Rnx ×Rnu ×Rnp → R represent the path constraints imposed
during the maneuver. We assume that the constraints indexed by Icvx ⊆ Ic are convex, and the constraints
indexed by Incvx ⊆ Ic are non-convex, so that Ic = Icvx∪Incvx. The matrices H0 and Hf represent the ability to
constrain only a subset of the state vector at the initial and final time. We assume that f : Rnx×Rnu×Rnp → Rnx
is differentiable almost everywhere with respect to its arguments. Lastly, we assume without loss of generality
that the cost function is convex and is given in Mayer form76 using the function φ : Rnx×Rnp → R. Any problem
that nominally includes a running cost can be written in this form, and it is the simplest way to transcribe the
continuous time problem into the standard form needed for real-time implementations. Note that free-final-time
problems can be expressed in the form of Problem 1 by using the parameter vector p.

A. Successive Convexification: Overview

We begin our discussion on real-time solutions to Problem 1 with a high-level overview of the PTR algorithm,
more generally referred to as successive convexification.39,45,47 Figure 1 illustrates the major steps in the PTR
algorithm. An initialization step is run first to define the initial solution guess (which may be very coarse), set the
scaling matrices to improve the optimization numerical properties, and pre-parse fixed portions of the problem.
§II.B provides details on each of these aspects. Next, the main PTR loop is entered and the initial guess becomes
the first reference solution. Throughout the paper, we make reference to “solver” and “PTR” iterations. Their
meaning is highlighted in Figure 1, namely, the former are iterations performed internally by the SOCP solver,
while the latter are the outer iterations around the main PTR loop defined by the convexification/test/solve steps.

4 of 24

American Institute of Aeronautics and Astronautics

Algorithm 1 Initilization step.

Input: Current vehicle state and desired terminal boundary conditions.
1: Compute initial guess for states, controls, and parameters using (1).
2: Compute Sx, Su, Sp and cx, cu, cp using (3). . Scaling matrices
3: Populate the A, b, c matrices with all constant non-zero entries. . Pre-parse step

The convexification step returns a convex approximation of Problem 1 about the current reference solution,
wherein the dynamics have been approximated as a discrete linear time-varying system and the non-convex
constraints have been linearized about the reference solution. §II.C provides details on both of these processes.
The output of the convexification step allows us to check if the current reference solution satisfies the desired
feasibility and convergence requirements. This is done using the stopping criterion explained in §II.E. If passed,
the algorithm terminates. Otherwise, the convex approximation is used to formulate an SOCP in the following
general conic form:

min
z

c>z

subject to: Az = b,

z ∈ CL × CQ1
× · · · × CQm ,

(Problem 2)

where CL = {w ∈ Rl |w ≥ 0} is a linear cone of dimension l, and each CQi = {(w0, w) ∈ Rdi | ‖w‖2 ≤ w0} is a sec-
ond order cone of dimension di. The problem data A ∈ Rnc×nz , b ∈ Rnc and c ∈ Rnz are then passed to the solver
to compute a new reference solution. Note that careful parsing is required to express the optimization problem in
the format of Problem 2. All previous work on successive convexification, and sequential convex programming in
general, has relied on “modelling” interfaces (often called parsers) that automate the conversion.39,42,47,54 How-
ever, these parsers introduce computational overhead, redundant constraints and dynamically allocated memory.
Each of these characteristics are undesirable for real-time spaceflight implementations.74 In this work, we offer
a general methodology to “hand parse” the problem and remove these shortcomings by explicitly exploiting
problem structure. Details are given in §II.D.

B. Initialization Step

This section details the initialization steps that are performed prior to calling the main PTR loop. The initializa-
tion step is summarized by Algorithm 1 and consists of three primary operations: generating the initial solution
guess, computing the scaling matrices, and pre-parsing the problem data. These steps can all be done before
calling the main PTR loop shown in Figure 1. If the initialization step is called at some time t < t0, where t0
is the time at which the guidance solution will begin to be executed by the vehicle, the initial state xic must be
projected forward in time by an amount t0 − t. The difference t0 − t must (at least) account for the time spent
computing the guidance solution. For the aforementioned test flights using the 3-DoF G-FOLD algorithm, this
value was been chosen to be one second.77

1. Initial Solution Guess

Using the given initial state of the vehicle, we first compute the state solution guess. The simplest way to initialize
the state solution, and the one that is used here, is by using the straight line initialization method.39 We take the
given initial state of the vehicle, xic, and the desired boundary conditions, xf, and compute a linear interpolation
such that

xk,i =
N − k
N − 1

xic,i +
k − 1

N − 1
xf,i, i = 1, . . . , nx, k ∈ N := {0, . . . , N − 1}, (1)

where N is the number of discrete nodes chosen to compute the solution (see §II.C). To initialize the control,
we leverage the known profile of the optimal solution whenever it is available. For the planar landing case study
discussed in §III, the optimal thrust is known to be bang-bang, and so the thrust input is initialized as such,
with switching times guessed based on preliminary ground tests. For the constrained 6-DoF landing problem, the
structure of the optimal thrust remains an open problem, and so we simply initialize with a thrust vector that
opposes gravity. Any torque inputs are generally assumed to be zero. Note that neither the state nor control
guess have to be feasible with respect to the dynamics or constraints. We have observed that different initial
guesses can lead the algorithm to converge to different solutions,42 and it should be clear that a more accurate
initial guess will result in faster convergence.

5 of 24

American Institute of Aeronautics and Astronautics

With the exception of the final time, guesses for the parameter vector will always be application dependent, and
thus no general statements can be made. However, for the final time specifically, we have observed that initializing
the parameter tf to be higher than the expected flight time produces slightly better convergence results. This
is similar to an observation made for the 3-DoF problem in.33 Dueri et al. found that as tf approached the
minimum feasible time of flight, more solver iterations were required to produce a solution. As tf was increased,
the solver had an easier time finding solutions. We have observed a similar trend here for more general landing
problems, and this is discussed more in §III.

2. Scaling Matrices

The scaling of solution variables can be done several ways. There is no general consensus on the best way to scale
optimal control problems to produce numerically well-conditioned parameter optimization problems. While some
authors argue that scaling (and balancing) the continuous time equations of motion is the most appropriate,17,78

others argue that scaling the discrete parameter optimization problem is sufficient.79,80 We have found the latter
method to be acceptable in our implementations.42 To this end we define the following affine transformations

xk = Sxx̂k + cx, (2a)

uk = Suûk + cu, (2b)

pk = Spp̂k + cp, (2c)

where the Sx, Su, Sp are diagonal matrices of commensurate dimension and cx, cu, cp are vectors that center the
state, control, and parameters. Throughout this paper, scaled quantities are referred to with the ·̂ adornment.
For the ith component of the state, control and parameter vectors, generically referred to using ai, we can define
two quantities: (i) the known range of the “true” component’s value [ai,max, ai,min] and (ii) an interval [âlb, âub]
that we wish to scale each component of quantity a to. Using this information, we use

Sa,ii =
ai,max − ai,min

âlb − âub
, and ca,i = ai,min − Sa,iiâlb. (3)

While the interval [âlb, âub] is in theory arbitrary, a judicious choice with respect to generating the standard form
of Problem 2 is to use [âlb, âub] = [0, 1]. This places the state, control, and parameter vectors into the linear cone
by construction and eliminates the need to enforce the lower bound constraints explicitly. The computational
savings afforded by this choice can be significant and are quantified in Theorem 3.

3. Pre-Parsing

Pre-parsing consists of initializing the matrix A, b and c used in Problem 2. There is a significant amount of
structure to the non-convex problems that are solved using any successive convexification technique, and this
structure is exploited to maximize the speed of the main PTR loop by performing as many computations as
possible during the pre-parse step. For a fixed problem statement, the majority of the non-zero entries in these
containers do not change across the PTR iterations, and the pre-parse step simply populates A, b, c with these
constant non-zero entries.

For this step, an enumeration of the variables and constraints must be decided upon. A generic enumeration of
the variable z and constraints is given in Figure 2. We define the block v1 variables to be all those that appear
in Problem 1 and/or contribute to the nonlinear equations of motion, block v2 variables to be all linear slack
variables added to write the problem in standard form, and block v3 variables to be those used to form the trust
regiona in addition to any Second-Order Cone (SOC) slack variables added to write the problem in standard
form. Similarly, we define block c1 constraints to be those that represent the dynamics and boundary condition
constraints, and define block c2 constraints as all other constraints imposed. These definitions permit a block
row/column decomposition of the A, b and c matrices that is used to guide the presentation in this paper. For
PTR-type algorithms, the vector c can be fully populated during the pre-parse step, and only A and b will change
across the PTR iterations. All block v2 and v3 slack variables added to write the convex approximation in the
standard form of Problem 2 will have a corresponding entry in the A matrix of unit magnitude (±1) that appears
in the row corresponding to the constraint the slack variable was added to. These are represented by the ?s (for
linear slack variables) and the ?Aχ (for SOC slack variables) blocks shown in Figure 2. Since all non-zero entries

aThe trust region is often implemented as a second order cone, though this is not necessary. Hence block v3 may contain both
linear and second-order cone variables.

6 of 24

American Institute of Aeronautics and Astronautics

z =



x̂

û

p̂

ν+

ν−

s1

s2

...

sml
χη,p

χη
...

χmq



block v1

block v2

block v3



?φ

0

?φ

0

0

wvc1

0
...

0

wtr,p ?
c
χ

wtr ?
c
χ

...

0



= c

A =

[
?AP 0 0

?AC ?s ?Aχ

]bl
oc

k
v 1

bl
oc

k
v 2

bl
oc

k
v 3

block c1

block c2

[
?bP

?bC

]
= b

?·P : computed during pre-parse & propagation

?·C : computed during pre-parse & constraint linearization

?s: fully pre-parsed

?·χ: fully pre-parsed

?φ: fully pre-parsed

Figure 2: Generic enumeration of the variables and constraints for the standard form of a trajectory optimization
problem. The constraint block c1 corresponds to the dynamics and boundary conditions, while constraint block c2
corresponds to all path constraints enforced as inequalities. Block v1 variables are used either directly in Problem 1
or to impose the dynamics and boundary conditions. Block v2 variables represent linear slack variables of arbitrary
dimension, and there are ml such variables. Block v3 variables represent the trust region implementation and
SOC variables of arbitrary dimension, and there are mq such variables.

are ±1, and occur in user-specified rows and columns, the entire ?s and ?Aχ blocks can be populated during the
pre-parse step and do not change throughout the iterations.

The ?·P blocks correspond to the equations of motion and boundary conditions, and can be partially populated
during the pre-parsing step. The remaining portions can only be populated after the convexification step. The
?·C blocks corresponds to the path constraints enforced as inequality constraints. These blocks can also only be
partially populated during the pre-parse step, and the remaining portions added only after the convexification
step. The degree to which the ?·P and ?·C blocks can be pre-populated is application dependent and will vary.

C. Convexification Step

The convexification step is responsible for computing a convex approximation to the nonlinear equations of motion
and all non-convex constraints gi for i ∈ Incvx. This is achieved using two separate steps that can be performed
in parallel: propagation and constraint linearization. Note that in implementation, all matrix computations
are performed using 1D “flat” arrays. This avoids both the use of 3D arrays to provide a temporal index, and
maintaining large 2D arrays that contain mostly zeros.59

1. Propagation

To enforce the dynamic equations of motion as a set of convex equality constraints, they must be mapped to
discrete-time affine functions of the state, control, and parameters. The technique to do this has been outlined
previously in39,42,59 and so only the key steps required to discuss the implications for real-time implementation
are included here. An archetypal algorithm is given in Algorithm 2 to provide an outline of the steps. Using the
current reference solution, the nonlinear dynamics are first normalized with respect to time, and then expanded
in a first order Taylor series about the reference triplet {x̄(t), ū(t), p̄} to yield:

ẋ(τ) = A(τ)x(τ) +B(τ)u(τ) + S(τ)p+R(τ), (4)

where τ ∈ [0, 1] is a normalized time variable and A(τ), B(τ), S(τ) are the partial derivatives of f with respect
to state, control, and the parameters respectively evaluated along the reference trajectory. Based on the results
presented in,59 we recommend using an affine interpolation of the control to discretize (4). To do so, we select

7 of 24

American Institute of Aeronautics and Astronautics

N time nodes between the current initial and final times

t0 = t0 < t1 < · · · < tN−1︸ ︷︷ ︸
real time nodes

= tf ≡ 0 = τ0 < τ1 < · · · < τN−1︸ ︷︷ ︸
propagation time nodes

= 1. (5)

The temporal nodes do not need to be distributed equally between their end points. We now use the discrete
variable k ∈ N := {0, . . . , N − 1} to index the state and control vectors. The control vector is assumed to vary
linearly between the values of uk and uk+1 at each node k ∈ N producing the relation

u(τ) = λ−
kuk + λ+

kuk+1, τ ∈ [τk, τk+1], (6)

where λ−
k = τk+1−τ/τk+1−τk and λ+

k = 1− λ−
k . The exact discretization of (4) can then be computed as

xk+1 = Akxk +B−
k uk +B+

k uk+1 + Skp+Rk, k ∈ {0, . . . , N − 2}, (7)

where for each k ∈ {0, . . . , N − 2},

Ak := Φ(τk+1, τk), (8a)

B−
k := Ak

∫ τk+1

τk

Φ−1(τ, τk)λ−
k (τ)B(τ)dτ, (8b)

B+

k := Ak

∫ τk+1

τk

Φ−1(τ, τk)λ+

k (τ)B(τ)dτ, (8c)

Sk := Ak

∫ τk+1

τk

Φ−1(τ, τk)S(τ)dτ, (8d)

Rk := Ak

∫ τk+1

τk

Φ−1(τ, τk)R(τ)dτ. (8e)

where Φ(τ, τk) is the zero input state transition matrix for the linear time varying system (4).

In implementation, we must compute N − 2 sets of the matrices given in (8). Each set of matrices is computed
by numerically integrating the integrands in (8) along with the state vector. We use a fixed-step RK4 integration
routine, with Nsub points. A flat 1D array of dimension nx(nx + 2nu + 3) is needed for this operation. For each
k = 0, . . . , N − 2 we integrate the following differential equation over the interval [τk, τk+1] using Nsub nodes

Ṗ (τ) =



f(Px(τ), ū(τ), p̄)

A(τ)PΦ(τ)

PΦ(τ)−1λ−
k (τ)B(τ)

PΦ(τ)−1λ+

k (τ)B(τ)

PΦ(τ)−1S(τ)

PΦ(τ)−1R(τ)


, P (τk) =



x̄k

flat (Inx)

0nxnu×1

0nxnu×1

0nx×1

0nx×1


, where P (τ) =



Px(τ)

PΦ(τ)

PB−(τ)

PB+(τ)

PS(τ)

PR(τ).


. (9)

Here, the flat (·) operation maps a 2D array to a 1D array using a column major representationb. Note that
the initial condition P (τk) is reset at each iteration to the value of the reference state trajectory at the kth
node. The benefits of this resetting strategy are significant and have been discussed in previous work.39,42,59

The derivative in (9) must be evaluated four times per subinterval, for a total of 4Nsub times per propagation
step. Our results suggest that the PTR algorithm’s convergence behaviour and quality of the final solution is
not strongly dependent on the choice of Nsub, and a value of Nsub ∈ [5, 15] is typically sufficient for rigid body
PDG dynamics. To obtain the final values of the matrices in (8), we must multiply each of PB−(τk+1) through
PR(τk+1) by the value of PΦ(τk+1). The final matrices in (8) can either be stored as “flattened” vectors in an
output data structure or placed directly into the A and b matrices used to construct the standard form SOCP.

Computing the Matrix Inverse One of the key steps that drives the computational complexity of the
propagation step is the matrix inverse required to evaluate the derivative of PΦ(τ) in (9). It is customary
to use Gaussian elimination with partial pivoting to compute this inverse.81 This involves computing an LU
decomposition and inverting the two factors. For powered descent problems that use Cartesian variables to
represent the state vector and have the mass variable in the first position, we have observed that the entries

bIn the code, no explicit conversions between 1D and 2D arrays are needed, and so the use of column major representation is not
in conflict with the C/C++ row major array storage.

8 of 24

American Institute of Aeronautics and Astronautics

below the diagonal in PΦ(τ) do not exceed 1 under the condition that the ratio Γ(τ)/m(τ)2 < 1, where Γ(τ) is the
thrust magnitude and m(τ) is the vehicle mass. Moreover, the equations of motion imply that the (1, 1) entry in
PΦ(τ) is constant and equal to 1. This means that partial pivoting may not be theoretically necessary to ensure
numeric stability in this case. However, for powered descent problems stated using dual quaternions the same
statement does not hold,42 and partial pivoting must be retained in this case. To maintain a general solution
method, we therefore retain partial pivoting in our implementations.

Computational Complexity For each k = 0, . . . , N − 2, the propagation step can be performed in

O
(

4Nsub

(
5

3
n3
x + 2n2

xnu + 6n2
x

))
floating point operations. Powered descent problems typically have nx ∈ [7, 15] and nu ∈ [2, 6]. As demonstrated
in §III, the propagation step can be performed in a near-negligible amount of time if it is implemented properly.

Measuring Dynamic Feasibility One of the advantages of the propagation step is the ability to estimate
the dynamic feasibility of the current reference solution {x̄k, ūk, p̄}k∈N. What we mean by this is that, given
the nonlinear dynamics of Problem 1, if the discrete control and parameter solution {ūk, p̄}k∈N are used to
integrate the nonlinear equations of motion using the interpolation scheme (6), then the resulting (open-loop)
state will pass through the discrete points {x̄k}k∈N to within some user defined tolerance. This notion of dynamic
feasibility, coupled with an analogous measure of feasibility with respect to the constraints, provides a simple
measure of the quality of a solution before it is executed.

To measure dynamic feasibility, we leverage the availability of the propagated state Px(τk+1). Ideally, this
vector would match the value predicted by the reference trajectory, x̄k+1. We compute the defect at the (k+1)th
node using

∆k+1 = ‖Px(τk+1)− x̄k+1‖2. (10)

If each ∆k+1 is less than a prescribed tolerance εfeasible, then we say that the reference trajectory is dynamically
feasible. Typically, choosing εfeasible ≤ 10−2 provides acceptable results, but this value is dependent on the
function f that describes the dynamic equations of motion.

2. Constraint Linearization

The next part of the convexification step is to compute a linear approximation to all non-convex path constraints.
These are constraints of the form

gi(x, u, p) ≤ 0, i ∈ Incvx, (11)

for some functions gi that are differentiable almost everywhere. This step is performed as part of the con-
vexification step so that it always precedes the parsing step discussed in §II.D. Using the reference trajectory
{x̄k, ūk, p̄}k∈N we compute the linearization of (11) to be

gi(x̄k, ūk, p̄) +∇gi
(
x̄k, ūk, p̄

)> xk − x̄kuk − ūk
p− p̄

 ≤ 0, k ∈ N, (12)

where ∇gi
(
x̄k, ūk, p̄

)
∈ R(nx+nu+np)×1 is gradient of gi evaluated at the kth reference node. Each non-convex

constraint is then approximated by N linear inequalities. Note that similar to the storage of output.Ad in the
propagation step of Algorithm 2, we store the data for the linear approximation of the ith non-convex constraint
in a single 2D array where the first entry in the kth column is the value of

gi(x̄k, ūk, p̄)−∇gi
(
x̄k, ūk, p̄

)> x̄kūk
p̄

 , (13)

and the remaining rows are used to store the value of the gradient ∇gi evaluated at the reference solution’s kth
node. Note that if a constraint gi affects only a subset of state, control, or parameter, then the size of this 2D
array is shrunk accordingly.

As gi(x̄k, ūk, p̄) is computed for each i ∈ Incvx and k ∈ N, the feasibility with respect to each constraint at the
solution nodes can be checked. If any constraints are found to be violated, then the value of output.feasible

9 of 24

American Institute of Aeronautics and Astronautics

Algorithm 2 The convexification step. All matrix operations are performed as 1D array operations.

Input: Reference trajectory {x̄k, ūk, p̄} for k ∈ N and feasiblity tolerance εfeasible.
Output: Data structure, output, containing the discretized dynamics matrices, linearized constraint data, and

feasibility indicator.
1: function convexify
2: Set output.feasible = true

3: Call the propagate function
4: Call the linearize function
5: end function

6: function propagate
7: P̂0 ←

[
flat (Inx) 01×nxnu 01×nxnu 01×nx 01×nx

]>
.

8: for k = 0, . . . , N − 2 do

9: P ←
[
x̄>k P̂0

]>
. reset using reference state, not using the previous Px

10: h← τk+1−τk/Nsub−1 . the rk4 step size using Nsub steps
11: Call rk4 on the derivs function to update P
12: Compute the defect ∆k+1 using (10)
13: if ∆k+1 > εfeasible then
14: output.feasible = false

15: end if
16: Set outputs:
17: output.Ad[:][k]← PΦ . [:] means “all rows”
18: output.Bd,−[:][k]← PΦPB−

19: output.Bd,+[:][k]← PΦPB+

20: output.S[:][k]← PΦPS
21: output.R[:][k]← PΦPR
22: end for
23: end function

24: function linearize
25: for i ∈ Incvx do
26: for k = 0, . . . , N − 1 do
27: output.Gi[1:][k]← ∇gi

(
x̄k, ūk, p̄

)
. [1:] means “all rows starting from 1”

28: output.Gi[0][k]← gi
(
x̄k, ūk, p̄

)
−∇gi

(
x̄k, ūk, p̄

)>[
x̄>k , ū

>
k , p̄

>]>
29: if gi

(
x̄k, ūk, p̄

)
> εfeasible then

30: output.feasible = false

31: end if
32: end for
33: end for
34: end function

35: function derivs(τ, P)
36: Compute Ψ← P−1

Φ using an LU decomposition with partial pivoting
37: Compute λ−

k (τ) and λ+

k (τ) and interpolate u(τ) using (6)
38: Compute partials:
39: f ← f(Px, u(τ), p̄)
40: A← ∇xf

(
Px, u(τ), p̄

)
41: B ← ∇uf

(
Px, u(τ), p̄

)
42: S ← ∇pf

(
Px, u(τ), p̄

)
43: R← −APx −Bu(τ)
44: Set outputs:
45: Ṗx ← f
46: ṖΦ ← APΦ

47: ṖB− ← Ψλ−
k (τ)B

48: ṖB+ ← Ψλ+

k (τ)B

49: ṖS ← ΨS
50: ṖR ← ΨR
51: end function

10 of 24

American Institute of Aeronautics and Astronautics

is set to false. If no constraints are violated, this does not necessarily imply that the trajectory will satisfy
the constraints at times between the solution nodes, a phenomenon referred to as clipping. This is therefore a
necessary but not sufficient assessment of feasibility with respect to path constraints. In contrast, the previously
defined assessment of dynamic feasibility is both necessary and sufficient.

D. Solve Step

The convexification step computes all of the data that is needed to formulate a convex approximation to Problem
1 and to obtain a new reference solution. Prior to calling the solver, the remaining data that was not placed in A
and b during the pre-parsing step must be added, a function that we refer to as parsing. Upon completion of the
parsing step, we have fully defined a problem in the format of Problem 2, and the solver is then called. The PTR
method solves each convex approximation to full optimality, rather than settling for a sub-optimal solution and
iterating again. Since calling the solver tends to dominate the algorithm runtime (even for a small number of
solver iterations), reducing the number of calls to the solver is paramount to obtaining fast guidance trajectories.

1. Parsing

The parsing step adds the data from the convexification step to A and b. These data form the remaining portions
of ?·P and ?·C blocks shown in Figure 2. Since the standard form solution vector z contains the scaled state,
control and parameters as 1D stacked vectors, the discretized dynamics (7) are written in block form as

R̂ = Âx̂+ B̂û+ Ŝp̂+ ν+ − ν−, (14)

where ν = ν+ − ν− is a virtual control term expressed using two variables in the linear cone39,43–45 and

Â =


A0Sx −Sx 0 · · · 0

0 A1Sx −Sx · · · 0
. . .

. . .
...

0 0 0 AN−2Sx −Sx

 , (15a)

B̂ =


B−

0 Su B+

0 Su 0 · · · 0

0 B−
1 Su B+

1 Su · · · 0
. . .

. . .
...

0 0 0 B−
N−2Su B+

N−2Su

 , (15b)

Ŝ =


S0Sp

S1Sp
...

SN−2Sp

 , (15c)

R̂ =


cx −R0 −A0cx −B−

0 cu −B
+

0 cu − S0cp
...

cx −RN−2 −AN−2cx −B−
N−2cu −B

+

N−2cu − SN−2cp

 . (15d)

If H0 ∈ Rn0×nx and Hf ∈ Rnf×nx are the matrices in Problem 1 corresponding to the boundary conditions,
the ?P block can then be filled in as

?AP =


[
H0Sx 0n0×nx(N−1)

]
0n0×nuN 0n0×np 0n0×nxN 0n0×nxN

Â B̂ Ŝ InxN −InxN[
0nf×nx(N−1) HfSx

]
0nf×nuN 0nf×np 0nf×nxN 0nf×nxN

 ?bP =

x0 −Hocx

R̂

xf −Hfcx

 . (16)

The entries in (15) and (16) that are independent of the matrices computed in (8) will have been populated
during the pre-parse step outlined in §II.B.3.

Remark 1 The notation adopted in some previous work has used an identity block in the upper left corner of
the Â matrix in (15a).59 Including this block in addition to the initial condition can create an A matrix that does
not have full row rank and lead to potential numerical issues in the solver.

11 of 24

American Institute of Aeronautics and Astronautics

While every trajectory optimization problem will have the same basic structure for the ?·P blocks, the ?·C blocks
are heavily application dependent. A trajectory optimization problem stated with two different sets of constraints
will have the same ?·P blocks, but will have different ?·C blocks. As such, we shall only treat two generic classes of
path constraints here: convex linear or second-order cone constraints and general non-convex constraints. Since
the non-convex constraints are simply linearized, they are effectively the same as the linear constraints. Hence
we need only consider linear constraints and second-order cone constraints.

Linear Constraints There are several linear constraints that will form part of all successive convexification
algorithms. For example, the use of 1-norm penalty functions for the virtual control and box-type constraints
on the state, control, and parameter vectors each produce linear constraints. In addition, there may be several
other linear constraints that arise either directly in Problem 1 or from linearizing non-convex constraints. To
illustrate how these are parsed, consider a linear state constraint of the form g>k x̂k ≤ hk for each k ∈ N and some
gk ∈ Rnx and hk ∈ R. This constraint is rewritten in standard form by introducing the slack variable s ∈ RN+
and writing

G>x̂+ s = h, s ≥ 0, (17)

where

G :=


g>0 0 · · · 0

0 g>1 · · · 0
. . .

...

0 0 · · · g>N−1

 ∈ RN×nxN and h :=


h0

h1

...

hN−1

 ∈ RN . (18)

The matrix G is then added to the ?AC block in the appropriate location based on the definition of block v1 in z
and block c2 in A (see Figure 2). Similarly, h is added to ?bC in the corresponding rows of block c2. The same
procedure applies to linear control and parameter constraints.

Remark 2 If the linear constraint comes from a non-convex path constraint, then G and h will in general be
functions of the reference trajectory {x̄k, ūk, p̄}k∈N, and must be re-evaluated during each convexification step
when a new reference is available. The same can be true even for constraints that are linear in their original form
in Problem 1. As an example of the latter, consider a trust region imposed using the ∞-norm, which is equivalent
to two linear constraints on each of the state, control, and parameter vectors. For each linear constraint, h must
be re-evaluated at each PTR iteration as the reference solution changes.

Theorem 3 To impose a linear path constraint on the state or control in Problem 1 requires adding N slack
variables to Problem 2 and adding N rows to both A and b.

As mentioned in §II.B.2, the state, control, and parameter vectors are scaled so that the variables being solved
for are already in the linear cone R+. Hence no additional constraints are needed to enforce the scaled variable’s
lower bound. Rather, they are enforced implicitly by the solver. Theorem 3 tells us that scaling the solution
vectors in this way saves us nxN slack variables and nxN rows in the matrices A and b. Even for the simplest
powered descent guidance problems, which have nx = 7, this represents a savings of at least 70 variables and
rows of A and b for typical implementations.

Second-Order Cone Constraints Not all successive convexification algorithms designed for trajectory op-
timization will make use of second order cone constraints. For powered descent problems specifically, however,
there are several constraints that are naturally expressed in this form, such as an upper bound on thrust mag-
nitude, thrust pointing constraints, approach cone constraints, and more. The ability to obtain trajectories
that explicitly enforce such constraints is important for spaceflight applications. Moreover, we have found that
2-norm-based trust regions are an efficient method to guide the convergence process for the PTR algorithm. To
illustrate how these constraints are handled during the parsing step, consider a generic second order cone path
constraint imposed on the state vector of the form ‖Sqx̂k + cq‖2 ≤ g>q x̂k + hq, for some Sq ∈ Rd×nx , cq ∈ Rd,
gq ∈ Rnx and hq ∈ R and each k ∈ N. Note that for the trajectory optimization problems considered here, it is
rare for the data describing a second order cone constraint to vary in time (i.e., change with k). This constraint
is rewritten in standard form by introducing three slack variables µk ∈ Rd, σk ∈ R+ and sk ∈ R+ for each k ∈ N
and writing

µk = Sqx̂k + cq, σk + sk = g>q x̂k + hq ⇒

[
σk

µk

]
∈ CQd+1

. (19)

12 of 24

American Institute of Aeronautics and Astronautics

Algorithm 3 The solve step.

Input: Matrices A, b, c and the output data structure of the convexification step.
Output: The data structure output with the reference trajectory overwritten.

1: function solve socp
2: Call parse to update A, b, c
3: z∗ = bsocp(A, b, c) . Call solver BSOCP with pre-defined tolerance values
4: Compute output.delta x using (21)
5: Set outputs: . x̂∗, û∗, p̂∗ are retrieved from z∗.
6: output.x = (IN ⊗ Sx)x̂∗ + (1N ⊗ cx)
7: output.u = (IN ⊗ Su)û∗ + (1N ⊗ cu)
8: output.p = Spp̂

∗ + cp
9: end function

The expressions in (19) now form two linear constraints, and can be written in standard form as follows. First,

define a vector χ :=
[
σ0 µ

>
0 σ1 µ

>
1 · · · σN−1 µ

>
N−1

]> ∈ RN(d+1). Then,

−
(
IN ⊗ Sq

)
x̂+

(
IN ⊗ [0 Id]

)
χ = 1N ⊗ cq and −

(
IN ⊗ gq

)
x̂+

(
IN ⊗ [1 01×d]

)
χ+ INs = hq1N (20)

where ⊗ is the Kronecker product, are equivalent to (19) with the additional distinction that each pair (σk, µk) ∈
CQd+1

.

Remark 4 The representation of the SOC constraint (20) can be entirely added to the matrices A and b during
the pre-parse step, unless it represents a trust region constraint. For a trust region constraint stated as an SOC
constraint, the matrices Sq, gq, hq are constant and may be pre-parsed, while cq changes across the iterations and
is part of the ?bC block.

Theorem 5 To impose a d + 1 dimensional second order cone path constraint in Problem 1 requires adding at
most N(d+ 2) variables to Problem 2 and an additional N(d+ 1) rows to both A and b.

The at most qualifier in Theorem 5 is due to the structure of variable-width trust regions in PTR methods,
where the right hand side of the SOC path constraint is already a solution variable and an additional slack
variable does not need to be added to the problem. Contrasting Theorem 5 with Theorem 3 allows us to quantify
the possible difference in problem size available by replacing second order cone variables with linear variables
and vice versa.

2. Calling the Solver

After the parsing step, the data A, b, c are passed to the BSOCP solver that in turn provides an optimal solution, see
Algorithm 3. The BSOCP solver uses interior point methods, is written in C, and was designed with the express
goal of solving powered descent guidance algorithms for flight implementations. All technical details relating
to the solver are summarized in64 and we do not attempt to cover them here. The solver’s capabilities were
demonstrated during the aforementioned G-FOLD flight test campaign as part of the Autonomous Ascent and
Descent Powered-Flight Testbed (ADAPT) project led by NASA’s Jet Propulsion Laboratory in collaboration
with Masten Space Systems.61–63,77

The solver is called by passing a data structure that contains A, b and c, along with the sizes of each cone
CL × CQ1

× · · · × CQmq and the numbers l,mq, where l is the dimension of the cone CL. The parameters used to
define numerical tolerances and convergence, listed in [64, Table A.1], must be tailored to the specific problem
instance being implemented. If z∗ is the solution returned by the solver, we note that not all of z∗ needs to
be retained. The new reference trajectory {x̄k, ūk, p̄}k∈N can be extracted by unscaling the entries of z∗ that
correspond to x̂, û, p̂. Prior to terminating the solve step, we leverage the fact that the scaled state vector x̂ is
already available on the stack and compute the maximum temporal difference for later use:

δx := max
k∈N

‖x̂k − S−1
x (x̄k − cx)‖∞. (21)

13 of 24

American Institute of Aeronautics and Astronautics

Table 1: Possible exit conditions for the successive convexification algorithm.

Converged Feasible Description

3 3 Converged and feasible.

7 3 Reached maximum PTR iterations before δx < εsolve. Safe but sub-optimal.

3 7 Converged but not feasible. Do not use.

7 7 Not converged and not feasible. Do not use.

E. Stopping Criteria

The final component of the algorithm is the stopping criteria, shown as the “Test” block in Figure 1. The possible
exit conditions are given in Table 1. As noted in42 we have found for powered descent problems that relatively
large changes in the control variables (in particular the thrust) can have little impact on the state variables.
Moreover, since the cost function is assumed to be in Mayer form, small changes to the state vector imply small
changes in the optimal cost. The converse is not necessarily true, and therefore we use a state-based convergence
tolerance that is based on δx computed in (21). Once δx < εsolve, the iterations are terminated provided that
output.feasible is true. Note that a trajectory cannot be dynamically feasible unless the virtual control norm is
small enough to allow this, and hence checking output.feasible is a more robust exit criterion than checking the
norm of the virtual control, since it also includes checking the feasibility with respect to non-convex constraints
at each temporal node.

III. Case Study: Planar Landing Problem

To illustrate the design methodology for real-time implementable algorithms, we present a case study of the
fuel-optimal planar landing problem introduced in.75 This problem has nonlinear dynamics that serve as the
sole source of non-convexity in the problem. While non-convex constraints can be added and the design process
remains unchanged, we retain the convex state and control constraints for this case study so that we may compare
our results to the analytically optimal solution structure proven in.75 Planar landing problems have nx = 7
states, nu = 2 controls and np = 1 parameter (the final time) for which to solve. The state vector, x(t) ∈ Rnx ,
is comprised of the mass, m(t) ∈ R++, the inertial position rI(t) ∈ R2, the inertial velocity, vI(t) ∈ R2, a single
attitude variable θ(t) ∈ R and the angular velocity ω(t) ∈ R. The control, u(t) ∈ Rnu , is assumed to come from a
body-fixed rocket engine capable of generating variable thrust Γ(t) ∈ R++ and a separate actuation mechanism
capable of independently providing a torque τ(t) ∈ R (e.g., an RCS system, grid fins, etc.). The equations of
motion are given for t ∈ [t0, tf] by

ṁ(t) = −αΓ(t) , ṙI(t) = vI(t) , v̇I(t) =
Γ(t)

m(t)
d(t) + gI , θ̇(t) = ω(t) , ω̇(t) =

τ(t)

J
, (22)

where α is the reciprocal of the effective exhaust velocity, d(t) :=
[
−sin θ(t) cos θ(t)

]>
, gI is the constant inertial

gravitational acceleration, and J is the constant inertia about the body axis orthogonal to the landing plane.
The initial and final states are constrained according to

H0x(t0) =



1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 0 1


x(t0) =


mic

rI,ic

vI,ic

ωic

 , Hfx(tf) =



0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1


x(tf) =


rI,f

vI,f

θf

ωf

 (23)

where xic ∈ Rn0 and xf ∈ Rnf represent the right hand sides of the prescribed boundary conditions.

For this problem, since the control inputs are scalar and decoupled, we formulate bounds on their magnitude
as the box constraints

umin ≤ u(t) ≤ umax ≡

Γmin ≤ Γ(t) ≤ Γmax,

−τmax ≤ τ(t) ≤ τmax.
(24)

14 of 24

American Institute of Aeronautics and Astronautics

FI

zI

yI

FB

Γ

θ

τ

gI

FI

zI

yI

xI

vI
−rI

gI

Figure 3: A depiction of the planar landing scenario used for the real-time powered descent guidance case study.

where Γmin,Γmax, τmax ∈ R++. For numerical solutions, we bound the state variables using

xmin ≤ x(t) ≤ xmax, (25)

for some xmin, xmax ∈ Rnx . In this case study, we take xmin and xmax to be just large enough so that none of
the bounds are active during the descent, thereby using their numerical values for scaling purposes only.

The minimum fuel cost function can be expressed in Mayer form by using the final mass of the vehicle. Max-
imizing the final mass is equivalent to minimizing the fuel consumed, and so we take `>x(tf) := −m(tf) as the
cost. The continuous time optimal control problem that we wish to solve is given by

min
tf , u(·)

`>x(tf)

subject to: ẋ = f(x, u, tf), (22)

H0x(t0) = xic Hfx(tf) = xf, (23)

umin ≤ u(t) ≤ umax, (24)

xmin ≤ x(t) ≤ xmax. (25)

(Problem 3)

Following the procedures discussed in §II and,39,41 for each PTR iteration we solve the convex approximation
given by Problem 4, posed for clarity using unscaled variables. This case study uses N equally spaced temporal
nodes. Note that we elect to use a 2-norm trust region that requires the use of several SOC variables. Use of
a different norm, such as the infinity norm, would in contrast allow the trust region to be written using only
linear constraints. However, Theorems 3 and 5 indicate that using the infinity norm trust region in place of the
2-norm trust region would in fact require N(nx + nu − 1) additional variables and N(nx + nu) additional rows
in the A and b matrices. Empirical results for this particular problem reveal that this increase in problem size
has a significant impact on the resulting solve times, even though the use of linear trust regions leads to a linear
program. Over 100 trials using both methods on the exact same problem, the 2-norm trust region provided an
average decrease of 11 ms in solver time per PTR iteration compared to the infinity norm trust region. This
speed-up may be specific to this particular problem. As such, we proceed by using the 2-norm trust region on

15 of 24

American Institute of Aeronautics and Astronautics

both the state and control.

min
x,u,p,ν,η,ηp

`>xN−1 + wvc‖ν‖1 + wtr1
>
Nη + wtr,pηp

subject to: H0x0 = xic,

xk+1 = Akxk +B−
k uk +B+

k uk+1 + Skp+Rk + νk, k = 0, . . . , N − 2

HfxN−1 = xf,

xmin ≤ xk ≤ xmax, k = 0, . . . , N − 1

umin ≤ uk ≤ umax, k = 0, . . . , N − 1

pmin ≤ p ≤ pmax,

|p− p̄| ≤ ηp,
‖xk − x̄k‖2 + ‖uk − ūk‖2 ≤ ηk, k = 0, . . . , N − 1.

(Problem 4)

We then scale the solution variables in Problem 4 by substituting xk ← Sxx̂k + cx, uk ← Suûk + cu and
p← Spp̂+ cp wherever they appear, except in the trust regions. Following [41, Remark IV.1], we scale the trust
region constraints using

|p̂− S−1
p (p̄− cp)| ≤ ηp, (26a)

‖x̂k − S−1
x (x̄k − cx)‖2 + ‖ûk − S−1

u (ūk − cu)‖2 ≤ ηk, k = 0, . . . , N − 1. (26b)

Next, we introduce slack variables so that all problem variables reside either in a linear cone or in a second-order
cone, and all constraints are expressed as equalities. This follows the general procedures outlined in §II.D.1. Note
that slack variables are also introduced to express the cost function as a linear function of the solution variables
using equivalent problem transformations.20 Each of these steps are straightforward, except the implementation
of the 2-norm trust region, which we highlight here. The state and control trust region is implemented by
introducing N variables (ηx,k, µx,k) and (ηu,k, µu,k) such that

µx,k = x̂k − S−1
x (x̄k − cx) and µu,k = ûk − S−1

u (ūk − cu), (27)

whereby ‖µx,k‖2 ≤ ηx,k and ‖µu,k‖2 ≤ ηu,k are now equivalent to (26b). Note that since ηx,k and ηu,k are solution
variables, we do not need to add another slack variable to this formulation as in (19). We can reconstruct the
original trust region ηk if needed as ηk = ηx,k + ηu,k. Define then the two variables

χx :=


ηx,0

µx,0
...

ηx,N−1

µx,N−1

 ∈ RN(nx+1), and χu :=


ηu,0

µu,0
...

ηu,N−1

µu,N−1

 ∈ RN(nu+1). (28)

The trust region constraint (26) can then be expressed as

p̂− ηp + sp = bp, p̂+ ηp − s′p = bp, (29a)

x̂+Hµ,xχx = bx, Hµ,x := IN ⊗
[
0nx×1 − Inx

]
, (29b)

û+Hµ,uχu = bu, Hµ,u := IN ⊗
[
0nu×1 − Inu

]
. (29c)

where, sp, s
′
p ∈ R+, (ηx,k, µx,k) ∈ CQnx+1

and (ηu,k, µu,k) ∈ CQnu+1
for each k ∈ N and

bx =


S−1
x (x̄0 − cx)

...

S−1
x (x̄N−1 − cx)

 , bu =


S−1
u (ū0 − cu)

...

S−1
u (ūN−1 − cu)

 , and bp = S−1
p (p̄− cp). (30)

Note that since there is only a single parameter in this problem, the trust region |p̂− bp| ≤ ηp is simply a linear
constraint and both p̂ and ηp remain in the linear cone.

To write the convex Problem 4 in standard form, we follow Figure 2 to order the solution variables using the
block v1, v2 and v3 structure. Recall that block v1 contains all variables used to write the (nonlinear) equations

16 of 24

American Institute of Aeronautics and Astronautics

[
H0Sx 0

Â

] [
0

B̂

] [
0

Ŝ

]
INx −INx[

0 HfSx

]
INx −INx −INx INx

INx −INx INx −INx
INx INx

INu INu
1 1
1 1 −1

1 −1 1

INx Hµ,x

INu Hµ,u





A [
xic −H0cx

R̂

]
[
xf −Hfcx

]
0

0

1Nx

1Nu

1

bp

bp

bx

bu





b

[
0 `>

]
0 0 0 0 wvc1

>
Nx

0 0 0 0 0 0 0 wtr,p wtrH
>
η,x wtrH

>
η,u


c

Data that
changes each

iteration

Nx := nxN

Nu := nuN

Figure 4: The A, b and c matrices for the planar landing case study. All empty blocks are zero, and the data
that is not pre-parsed are highlighted by blue boxes.

of motion, block v2 contains the linear slack variables added to write the problem in standard form, and block
v3 contains all variables relating to the trust region implementations and all SOC variables. The A, b and c
matrices can then be written as shown in Figure 4, with the block structure indicated by the gray lines. Note
that in Figure 4 we have defined

Hη,x := 1N ⊗
[
1 01×nx

]
and Hη,u := 1N ⊗

[
1 01×nu

]
. (31)

The problem dimensions can be computed as a function of the base units N, nx, nu and np to be:

Variables: N(8nx + 3nu + 2) + 5np,

Equality constraints: N(5nx + 2nu) + 3np + (nx − 1),

Linear cones: N(7nx + 2nu) + 5np,

Second order cones: 2N .

A. Initialization Step

Using (1), the initial guess was computed by linearly interpolating between the vector
[
mic r

>
I,ic v

>
I,ic 0 ωic

]>
and the vector

[
mf r

>
I,f v

>
I,f θf ωf

]>
where mf = mic+mmin

2 . Given that the optimal thrust solution is always on

the boundary of the interval (24),75 we initialize the thrust input channel using

Γk =

Γmin, k = 0, 1, . . . ,m

Γmax, k = m+ 1, . . . , N.
(32)

The effect of the parameter m on the computed solution for a fixed N is studied in Figure 8. The optimal torque
input does not necessarily activate either of its constraints (24), and so we initialize the torque to be zero at each
temporal node.

The pre-parse step was implemented after writing down the matrices in Figure 4. Each non-zero entry that
is not encompassed by a blue box was set during the pre-parse step of the initialization function, along with a

17 of 24

American Institute of Aeronautics and Astronautics

Table 2: Percentage of the data defined during the pre-parse step for Problem 4 for a discretization density of
N = 20. Note that A is 99.7% sparse.

Total Size Non-Zero Entries Defined at Pre-parse Pct. %

A 789× 1285 2919 2410 73.3

b 789 506 193 38.1

c 1285 182 182 100

Table 3: Nominal parameters used in the planar landing case study.

Parameter Value Units Parameter Value Units

tf,guess 8.0 s tf,max /min 4.0/12.0 s

mic 5.0 kg mmin 2.0 kg

rI,ic [6.0 24.0]> m rI,f [0 0]> m

vI,ic [−4.0 −2.0]> m/s vI,f [0 0]> m/s

ωic 0 rad/s ωf 0 rad/s

θ0 ∈ [−π, π] rad θf 0 rad

Γmin 1.5 N Γmax 6.5 N

τmax 0.1 Nm J 0.5 kg m2

Isp 3 s−1 g −1 m/s2

wvc 102 − wtr 5−2 −
wtr,p 10−2 − Nsub 15 −
εfeasible 10−2 − εsolve 10−3 −

subset of the data within the blue boxes. With regards to the planar landing problem considered here, Table 2
indicates the number of non-zero entries that can be populated at this time. Decoupling the pre-parse and parse
steps allows significant computational savings, since only about 800 non-zero values need to be updated during
each SCP iteration of the successive convexification algorithm. Implementations that use a generic parser must
construct the entire A, b and c matrices each iteration and do not leverage the fact that the same optimization
problem is being solved repeatedly.

B. Performance Results

Prior to discussing the computational performance, we briefly compare the real-time computed trajectory to
one that is (locally) optimal. The problem parameters used for this comparison are given in Table 3. We use
GPOPS-II to compute the locally optimal solution for comparison.82 Figure 5 shows the resulting trajectories
in the yI − zI landing plane, alongside the thrust and torque trajectories. For the real-time solution, the circles
represent the last reference solution {x̄k}k∈N obtained by the solve step prior to exiting the main iterative
loop, whereas the solid line corresponds to the continuous state trajectory obtained by integrating the solution
{ūk, p̄}k∈N through the nonlinear dynamics using (6). The attitude of the vehicle is depicted by the red lines in
Figure 5(a) at identical temporal points in each trajectory, and it can be seen to match well at each point. Both
the state and control trajectories show some key differences; namely the real-time control solution does not have
the minimum thrust arc seen in the solution computed by GPOPS-II and the torque solution follows a different
albeit smoother trajectory. The torque jitter in the GPOPS-II solution is an artifact of that software’s known
difficulty in finding singular solutions when encompassed by non-singular arcs.82 These control differences do
not greatly impact the PTR algorithm’s ability to find an acceptable sub-optimal solution, as the cost is not
significantly affected by the presence of the minimum thrust arc. As seen in Figure 6, the final mass is very close
between the two trajectories. In fact, the real-time solution finds a solution that is roughly 0.6% sub-optimal
and with a final time that is within 1.3% of the optimal solution. This sub-optimality is traded-off for the ability
to compute the solutions in real-time in an architecture that is appropriate for a flight code implementation.

18 of 24

American Institute of Aeronautics and Astronautics

(a) The computed inertial position trajectories (b) The computed control trajectories

Figure 5: The real-time solution using N = 20 compared to the (locally) optimal planar landing solution. In
(a), the circles represent solution nodes at each k ∈ N and the vehicle attitude is shown for both solutions at the
same time instances.

We now study the computational performance obtained by the real-time PTR algorithm in addition to the
sensitivity of key outputs to user-defined algorithm parameters. The solution method was implemented in C++
an run using a single 3.2 GHz Intel i5 processor with 8GB of RAM. All code was compiled using the -O3 flag.
Figure 7 shows the computational times obtained as a function of the discretization density N . Each data point
represents the mean value of 100 trials using the specified value of N and all other parameters as in Table 3c. The
error bars that are shown indicate one standard deviation. The contributions of the pre-parse, convexification,
parse and solve steps are shown individually, in addition to the total solution time. The top plot in Figure 7
shows that the total solution time and the solver time per PTR iteration follow the same trend as N increases.
It is expected that the solver time is cubic in N since the BSOCP solver performs a Cholesky factorization each
time it is called to obtain the Newton search direction,32 a function whose operation count scales with the
cube of the matrix dimension.81 The cubic polynomial fit to the total time (shown by the red line) supports
the hypothesis that the total solution time is dominated by the internal operations of the BSOCP solver, and in
particular the Cholesky factorization. The time spent outside the solver consumes on average 2% of the total
solution time. The desirable conclusion is that the PTR algorithm adds little computational overhead to what is
needed by the solver. However, caution should be used when extrapolating this result to other problem instances,
as the ratio of time spent in the solver to time spent in other functions can vary between different problems and
implementations.

The bottom four plots in Figure 7 show that the percent sub-optimality is roughly consistent across all tested
values of N , and that the computation time of the pre-parse, convexification and parse steps scale linearly with
N . For the convexification step, this is expected based on the computational complexity discussion presented
in §II.C. Both the pre-parse and parsing steps can be done very quickly, and do not impact the overall solution
time of the PTR algorithm.

Lastly, Figure 8 shows the variation in the final time, the final mass (i.e., the cost) and the total solution time
versus several parameters that are selected by the user. For each plot, all nominal values given in Table 3 were
held constant (with N = 15) and only the variable shown on the x-axis was changed. The final time guess is
seen to strongly factor into the total solution time, and a minimum is observed around the optimal value of ≈ 9s,
as expected. As previously mentioned, the final time guesses that are much shorter than the optimal one lead
to higher solution times compared to those that are longer. The values chosen for the virtual control and trust
region weights can affect the dependent variables tested if they are chosen improperly; the results suggest there
is a rather large range for each parameter where the computed solution remains nearly the same. The solution
using wtr = 10−3 produced results that did not converge and are marked with a red × (the total solve time is
off of the chart). This unsurprisingly indicates that if state and control deviations are not penalized enough,

cSince the results shown are on a per iteration basis, we hypothesize that varying the initial conditions in a more traditional Monte
Carlo test would not change the results as presented. There are no additional constraints to activate and no additional non-zero
entries in A or b to make the problem more challenging to solve.

19 of 24

American Institute of Aeronautics and Astronautics

(a) Translational states (b) Rotational states

Figure 6: Individual state trajectories for the planar landing case study. The real-time results use N = 20.

the algorithm can step far enough from the reference trajectory that the linearizations are no longer valid, and
convergence suffers accordingly. The variations observed for the solution that uses wvc = 103 are due to scaling
issues that start to arise when this parameter is too large.

The fourth row of Figure 8 shows that the values of the inertia and specific impulse can affect the total solution
time, but do not strongly affect the final time or mass for this case study. This implies that algorithm parameters
tuned for nominal values do not need to be changed if the actual values change by up to +10/−20%. Beyond this
range, the algorithm parameters may need to be changed slightly to obtain the best computational performance.
The increased solution time for large Isp is caused by the increasing optimal final time that eventually requires
an additional PTR iteration to converge to. Caution must be exercised when extrapolating these latter two
results to other problem instances, since different dynamics, boundary conditions and/or constraints can change
the relationship between J, Isp and the dependent variables studied here. A similar sensitivity analysis should be
carried out for each new implementation. Lastly, the fifth row of Figure 8 shows the effect of varying m in (32).
While the final mass and final time are largely unaffected, it can be seen that lower values of m produce faster
convergence. The optimal choice in this case is m = 1, the nominal value that is used.

IV. Conclusions

Solving challenging non-convex optimization problems in real-time on-board spacecraft has been identified as
a key technology required for future entry, descent and landing systems. In this paper, we have presented
a methodology for designing real-time algorithms that can be implemented in adherence to the standards of
spaceflight code. A set of general algorithmic steps were presented, followed by a case study to illustrate how
these steps are applied to a powered descent guidance problem. The planar landing problem that was studied
constitutes the most general landing problem with both rotational and translational states for which the optimal
control structure is theoretically understood. The case study indicates that solutions that are less than 1% sub-
optimal can be computed on the order of 100 ms using a 3.2 GHz Intel i5 processor with 8 GB of RAM. While
these results are specific to the planar landing problem that was studied, they offer a promising indication that
the algorithm and methodology are suitable for the full scale 6-DoF problem.

Acknowledgements

This research has been supported by NASA grant NNX17AH02A and government sponsorship is acknowledged.
This paper is dedicated to the memory of John Alexander Hansuld.

20 of 24

American Institute of Aeronautics and Astronautics

Figure 7: The computational times and percent sub-optmality obtained for each primary step in the algorithm
versus the discretization density N for the planar landing case study.

References

1J. W. Jones, “The Recent Large Reduction in Space Launch Cost,” in 48th International Conference on Environmental Systems,
(Albuquerque, NM), 2018.

2R. T. Vought, “Commerce, Justice, Science, and Related Agencies Appropriations Act, 2020.” Executive Office of the President,
Office of Management and Budget, 2019.

3A. R. Klumpp, Apollo Lunar-Descent Guidance. Charles Stark Draper Laboratory, 1971.
4J. M. Carson III, M. M. Munk, R. R. Sostaric, J. N. Estes, F. Amzajerdian, J. B. Blair, D. K. Rutishauser, C. I. Restrepo,

A. Dwyer-Cianciolo, G. T. Chen, and T. Tse, “The SPLICE Project: Continuing NASA Development of GN&C Technologies for
Safe and Precise Landing,” in AIAA SciTech Forum, (San Diego, CA), 2019.

5E. A. Robertson, “Synopsis of Precision Landing and Hazard Avoidance (PL&HA) Capabilities for Space Exploration,” in AIAA
Guidance, Navigation, and Control Conference, American Institute of Aeronautics and Astronautics, 2017.

6E. S. Team, “Europa Study 2012 Report: Europa Lander Mission,” Tech. Rep. Task Order NMO711062 Outer Planets Flagship
Mission, Jet Propulsion Laboratory, 2012.

7A. M. Dwyer-Cianciolo, C. D. Karlgaard, D. Woffinden, R. A. Lugo, J. Tynis, R. R. Sostaric, S. Striepe, R. Powell, and J. M.
Carson, “Defining Navigation Requirements for Future Missions,” in AIAA Scitech 2019 Forum, American Institute of Aeronautics
and Astronautics, 2019.

8NASA Science, “Moon’s South Pole in NASA’s Landing Sites.” https://solarsystem.nasa.gov/news/907/moons-south-pole-in-
nasas-landing-sites/, 2019. Accessed: 11/26/2019.

9M. Robinson, “Lunar Reconnaissance Orbiter Camera (LROC).” http://lroc.sese.asu.edu/posts/993, 2018. Accessed:
11/26/2019.

10J. S. Meditch, “On the Problem of Optimal Thrust Programming For a Lunar Soft Landing,” IEEE Transactions on Automatic
Control, vol. 9, no. 4, pp. 477–484, 1964.

11D. Lawden, “Optimal Trajectories for Space Navigation,” in Optimal Trajectories for Space Navigation, London: Butterworths,
1963.

12J.-P. Marec, Optimal Space Trajectories. Amsterdam: Elsevier Scientific Publishing Company, 1979.
13C. N. D’Souza, “An Optimal Guidance Law for Planetary Landing,” in AIAA Guidance, Navigation, and Control Conference,

(New Orleans, LA), 1997.
14U. Topcu, J. Casoliva, and K. D. Mease, “Fuel Efficient Powered Descent Guidance for Mars Landing,” in AIAA Guidance,

Navigation, and Control Conference, (San Francisco, CA), 2005.

21 of 24

American Institute of Aeronautics and Astronautics

https://solarsystem.nasa.gov/news/907/moons-south-pole-in-nasas-landing-sites/
https://solarsystem.nasa.gov/news/907/moons-south-pole-in-nasas-landing-sites/
http://lroc.sese.asu.edu/posts/993

15U. Topcu, J. Casoliva, and K. D. Mease, “Minimum-Fuel Powered Descent for Mars Pinpoint Landing,” Journal of Spacecraft
and Rockets, vol. 44, no. 2, pp. 324–331, 2007.

16P. Lu, S. Forbes, and M. Baldwin, “A Versatile Powered Guidance Algorithm,” in AIAA Guidance, Navigation ,and Control
Conference, (Minneapolis, MN), 2012.

17P. Lu, “Propellant-Optimal Powered Descent Guidance,” Journal of Guidance, Control, and Dynamics, vol. 41, no. 4, pp. 813–
826, 2018.

18J. Nocedal and S. J. Wright, Numerical Optimization. New York, NY: Springer Science & Business Media, 2006.
19A. Forsgren, P. E. Gill, and M. H. Wright, “Interior Methods for Nonlinear Optimization,” SIAM Review, vol. 44, no. 4,

pp. 525–597, 2002.
20S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge, UK: Cambridge University Press, 2004.
21B. Açıkmeşe and S. Ploen, “Convex Programming Approach to Powered Descent Guidance for Mars Landing,” Journal of

Guidance, Control, and Dynamics, vol. 30, no. 5, pp. 1353–1366, 2007.
22B. Açıkmeşe and L. Blackmore, “Lossless Convexification of a Class of Optimal Control Problems with Non-Convex Control

Constraints,” Automatica, vol. 47, no. 2, pp. 341–347, 2011.
23L. Blackmore, B. Açıkmeşe, and D. P. Scharf, “Minimum-Landing-Error Powered-Descent Guidance for Mars Landing Using

Convex Optimization,” Journal of Guidance, Control, and Dynamics, vol. 33, no. 4, pp. 1161–1171, 2010.
24J. M. Carson III, B. Açıkmeşe, and L. Blackmore, “Lossless Convexification of Powered-Descent Guidance with Non-Convex

Thrust Bound and Pointing Constraints,” in IEEE American Control Conference, (San Francisco, CA), 2011.
25B. Açıkmeşe, J. M. Carson III, and L. Blackmore, “Lossless Convexification of Nonconvex Control Bound and Pointing Constraints

of the Soft Landing Optimal Control Problem,” IEEE Transactions on Control Systems Technology, vol. 21, no. 6, pp. 2104–2113,
2013.

26M. W. Harris and B. Açıkmeşe, “Lossless convexification for a class of optimal control problems with linear state constraints,”
in 52nd IEEE Conference on Decision and Control, IEEE, 2013.

27M. W. Harris and B. Açıkmeşe, “Lossless convexification for a class of optimal control problems with quadratic state constraints,”
in 2013 American Control Conference, IEEE, 2013.

28M. W. Harris and B. Açıkmeşe, “Lossless Convexification of Non-Convex Optimal Control Problems for State Constrained Linear
Systems,” Automatica, vol. 50, no. 9, pp. 2304–2311, 2014.

29L. Blackmore, B. Açıkmeşe, and J. M. Carson III, “Lossless Convexification of Control Constraints for a Class of Nonlinear
Optimal Control Problems,” Systems and Control Letters, vol. 61, no. 8, pp. 863–870, 2012.

30D. Malyuta and B. Acikmese, “Lossless Convexification of Optimal Control Problems with Semi-Continuous Inputs,” arXiv
e-prints, p. arXiv:1911.09013, 2019.

31D. Malyuta, M. Szmuk, and B. Acikmese, “Lossless Convexification of Non-Convex Optimal Control Problems with Disjoint
Semi-Continuous Inputs,” arXiv e-prints, p. arXiv:1902.02726, 2019.

32D. Dueri, J. Zhang, and B. Açıkmeşe, “Automated Custom Code Generation for Embedded, Real-time Second Order Cone
Programming,” IFAC Proceedings Volumes, vol. 47, no. 3, pp. 1605–1612, 2014.

33D. Dueri, B. Açıkmeşe, D. P. Scharf, and M. W. Harris, “Customized Real-Time Interior-Point Methods for Onboard Powered-
Descent Guidance,” Journal of Guidance, Control, and Dynamics, vol. 40, no. 2, pp. 197–212, 2016.

34A. Domahidi, E. Chu, and S. Boyd, “ECOS: An SOCP Solver for Embedded Systems,” in European Control Conference,
pp. 3071–3076, 2013.

35D. Dueri, B. Açıkmeşe, M. Baldwin, and R. S. Erwin, “Finite-Horizon Controllability and Reachability for Deterministic and
Stochastic Linear Control Systems with Convex Constraints,” in IEEE American Control Conference, 2014.

36U. Eren, D. Dueri, and B. Açıkmeşe, “Constrained Reachability and Controllability Sets for Planetary Precision Landing via
Convex Optimization,” Journal of Guidance, Control, and Dynamics, vol. 38, no. 11, pp. 2067–2083, 2015.

37D. Dueri, S. V. Rakovic, and B. Acikmese, “Consistently Improving Approximations for Constrained Controllability and Reach-
ability,” in 2016 European Control Conference (ECC), IEEE, 2016.

38M. Szmuk, B. Açıkmeşe, and A. W. Berning, “Successive Convexification for Fuel-Optimal Powered Landing with Aerodynamic
Drag and Non-Convex Constraints,” in AIAA Guidance, Navigation, and Control Conference, (San Diego, CA), 2016.

39M. Szmuk, T. P. Reynolds, and B. Açıkmeşe, “Successive Convexification for Real-Time 6-DoF Powered Descent Guidance with
State-Triggered Constraints,” arXiv e-prints, 2018. arXiv:1811.10803.

40M. Szmuk, T. P. Reynolds, B. Açıkmeşe, M. Mesbahi, and J. M. Carson III, “Successive Convexification for Real-Time Rocket
Landing Guidance with Compound State-Triggered Constraints,” in AIAA SciTech Forum, (San Diego, CA), 2019.

41T. P. Reynolds, M. Szmuk, D. Malyuta, M. Mesbahi, B. Açıkmeşe, and J. M. Carson III, “A State-Triggered Line of Sight
Constraint for 6-DoF Powered Descent Guidance Problems,” in AIAA SciTech Forum, (San Diego, CA), 2019.

42T. P. Reynolds, M. Szmuk, D. Malyuta, M. Mesbahi, B. Açıkmeşe, and J. M. Carson III, “Dual Quaternion Based 6-DoF Powered
Descent Guidance with State-Triggered Constraints,” arXiv e-prints, 2019. arXiv:1904.09248.

43Y. Mao, M. Szmuk, and B. Açıkmeşe, “Successive Convexification of Non-Convex Optimal Control Problems and its Convergence
Properties,” in IEEE Conference on Decision and Control, (Las Vegas, NV), 2016.

44Y. Mao, D. Dueri, M. Szmuk, and B. Açıkmeşe, “Successive Convexification of Non-Convex Optimal Control Problems with
State Constraints,” IFAC-PapersOnLine, vol. 50, no. 1, pp. 4063–4069, 2017.

45Y. Mao, M. Szmuk, and B. Açıkmeşe, “Successive Convexification: A Superlinearly Convergent Algorithm for Non-convex
Optimal Control Problems,” arXiv e-prints, 2018. arXiv:1804.06539.

46J. Schulman, Y. Duan, J. Ho, A. Lee, I. Awwal, H. Bradlow, J. Pan, S. Patil, K. Goldberg, and P. Abbeel, “Motion Planning
with Sequential Convex Optimization and Convex Collision Checking,” The International Journal of Robotics Research, vol. 33,
no. 9, pp. 1251–1270, 2014.

47R. Bonalli, A. Cauligi, A. Bylard, and M. Pavone, “GuSTO: Guaranteed Sequential Trajectory Optimization via Sequential
Convex Programming,” in 2019 IEEE International Conference on Robotics and Automation (ICRA), IEEE, 2019.

48R. Bonalli, A. Bylard, A. Cauligi, T. Lew, and M. Pavone, “Trajectory Optimization on Manifolds: A Theoretically-Guaranteed
Embedded Sequential Convex Programming Approach,” in Robotics: Science and Systems, 2019.

49T. A. Howell, B. E. Jackson, and Z. Manchester, “ALTRO: A Fast Solver for Constrained Trajectory Optimization,” in IEEE/RSJ
International Conference on Intelligent Robots and Systems, 2019.

22 of 24

American Institute of Aeronautics and Astronautics

50X. Liu and P. Lu, “Solving Nonconvex Optimal Control Problems by Convex Optimization,” Journal of Guidance, Control, and
Dynamics, vol. 37, no. 3, pp. 750–765, 2014.

51X. Liu, Z. Shen, and P. Lu, “Solving the Maximum-Crossrange Problem via Successive Second-Order Cone Programming With
a Line Search,” Aerospace Science and Technology, vol. 47, pp. 10–20, 2015.

52X. Liu, Z. Shen, and P. Lu, “Entry Trajectory Optimization by Second-Order Cone Programming,” Journal of Guidance, Control,
and Dynamics, vol. 39, no. 2, pp. 227–241, 2016.

53Z. Wang and M. J. Grant, “Constrained Trajectory Optimization for Planetary Entry via Sequential Convex Programming,” in
AIAA Atmospheric Flight Mechanics Conference, American Institute of Aeronautics and Astronautics, 2016.

54Z. Wang and M. J. Grant, “Improved Sequential Convex Programming Algorithms for Entry Trajectory Optimization,” in AIAA
Scitech 2019 Forum, American Institute of Aeronautics and Astronautics, 2019.

55M. Szmuk, C. A. Pascucci, D. Dueri, and B. Acikmese, “Convexification and Real-Time On-board Optimization for Agile Quad-
Rotor Maneuvering and Obstacle Avoidance,” in 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), IEEE, 2017.

56M. Szmuk, C. A. Pascucci, and B. Acikmese, “Real-Time Quad-Rotor Path Planning for Mobile Obstacle Avoidance Using
Convex Optimization,” in 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), IEEE, 2018.

57M. Szmuk, D. Malyuta, T. P. Reynolds, M. S. Mceowen, and B. Açıkmeşe, “Real-Time Quad-Rotor Path Planning Using
Convex Optimization and Compound State-Triggered Constraints,” in IEEE/RSJ International Conference on Intelligent Robots
and Systems, p. arXiv:1902.09149, IEEE, 2019.

58Y. Mao, M. Szmuk, and B. Acikmese, “A Tutorial on Real-time Convex Optimization Based Guidance and Control for Aerospace
Applications,” in 2018 Annual American Control Conference (ACC), IEEE, 2018.

59D. Malyuta, T. Reynolds, M. Szmuk, M. Mesbahi, B. Acikmese, and J. M. Carson, “Discretization Performance and Accuracy
Analysis for the Rocket Powered Descent Guidance Problem,” in AIAA Scitech 2019 Forum, American Institute of Aeronautics and
Astronautics, 2019.

60B. Açıkmeşe, M. Aung, J. Casoliva, S. Mohan, A. Johnson, Scharf, M. D., S. D., A. Wolf, and M. Regehr, “Flight Testing of
Trajectories Computed by G-FOLD: Fuel Optimal Large Divert Guidance Algorithm for Planetary Landing,” in 23rd AAS/AIAA
Space Flight Mechanics Meeting, Kauai, HI, 2013, AAS/AIAA, 2017.

61D. P. Scharf, M. W. Regehr, G. M. Vaughan, J. Benito, H. Ansari, M. Aung, A. Johnson, J. Casoliva, S. Mohan, D. Dueri,
B. Acikmese, D. Masten, and S. Nietfeld, “ADAPT Demonstrations of Onboard Large-Divert Guidance with a VTVL Rocket,” in
2014 IEEE Aerospace Conference, IEEE, 2014.

62JPL and M. S. Systems, “750 Meter Divert Xombie Test Flight for G-FOLD, Guidance for Fuel Optimal Large Divert, Validation,”
http://www.youtube.com/watch?v=jl6pw2oossU, 2012.

63JPL and M. S. Systems, “500 meter divert Xombie test flight for G-FOLD, Guidance for Fuel Optimal Large Divert, validation,”
http://www.youtube.com/watch?v=1GRwimo1AwY, 2012.

64D. Dueri, Real-time Optimization in Aerospace Systems. Ph.D., University of Washington, 2018.
65J. Mattingley and S. Boyd, “CVXGEN: A Code Generator for Embedded Convex Optimization,” Optimization and Engineering,

vol. 13, no. 1, pp. 1–27, 2011.
66A. Zanelli, A. Domahidi, J. Jerez, and M. Morari, “FORCES NLP: An Efficient Implementation of Interior-Point Methods for

Multistage Nonlinear Nonconvex Programs,” International Journal of Control, pp. 1–17, 2017.
67A. Domahidi, A. U. Zgraggen, M. N. Zeilinger, M. Morari, and C. N. Jones, “Efficient Interior Point Methods for Multistage

Problems Arising in Receding Horizon Control,” in 2012 IEEE 51st IEEE Conference on Decision and Control (CDC), IEEE, 2012.
68A. Domahidi, Methods and Tools for Embedded Optimization and Control. PhD thesis, ETH Zurich, 2013. Diss., Eidgenössische

Technische Hochschule ETH Zürich, Nr. 21366, 2013.
69S. Mariethoz, A. Domahidi, and M. Morari, “High-Bandwidth Explicit Model Predictive Control of Electrical Drives,” IEEE

Transactions on Industry Applications, vol. 48, no. 6, pp. 1980–1992, 2012.
70J. L. Jerez, P. J. Goulart, S. Richter, G. A. Constantinides, E. C. Kerrigan, and M. Morari, “Embedded Predictive Control on

an FPGA using the Fast Gradient Method,” in 2013 European Control Conference (ECC), IEEE, 2013.
71A. Liniger, A. Domahidi, and M. Morari, “Optimization-Based Autonomous Racing of 1:43 Scale RC Cars,” arXiv e-prints,

p. arXiv:1711.07300, 2017.
72J. Kabzan, L. Hewing, A. Liniger, and M. N. Zeilinger, “Learning-Based Model Predictive Control for Autonomous Racing,”

IEEE Robotics and Automation Letters, vol. 4, no. 4, pp. 3363–3370, 2019.
73U. Lee and M. Mesbahi, “Constrained Autonomous Precision Landing via Dual Quaternions and Model Predictive Control,”

Journal of Guidance, Control, and Dynamics, vol. 40, no. 2, pp. 292–308, 2017.
74G. J. Holzmann, “The Power of Ten – Rules for Developing Safety Critical Code,” IEEE Computer, 2006.

https://spinroot.com/p10/.
75T. P. Reynolds and M. Mesbahi, “Optimal Planar Powered Descent with Independent Thrust and Torque,” Journal of Guidance,

Control, and Dynamics (Submitted), 2019.
76L. D. Berkovitz, Optimal Control Theory. New York, NY: Springer-Verlag, 1974.
77D. P. Scharf, B. Açıkmeşe, D. Dueri, J. Benito, and J. Casoliva, “Implementation and Experimental Demonstration of Onboard

Powered-Descent Guidance,” Journal of Guidance, Control, and Dynamics, vol. 40, no. 2, pp. 213–229, 2017.
78M. I. Ross, Q. Gong, M. Karpenko, and R. J. Proulx, “Scaling and Balancing for High-Performance Computation of Optimal

Controls,” Journal of Guidance, Control, and Dynamics, vol. 41, no. 10, pp. 2086–2097, 2018.
79J. T. Betts, Practical Methods for Optimal Control Using Nonlinear Programming. Philadelphia, PA: SIAM, 2001.
80P. E. Gill, W. Murray, and M. H. Wright, Practical Optimization. Academic Press, Inc., 1981.
81L. N. Trefethen and D. Bau, Numerical Linear Algebra. Philadelphia, PA: SIAM, 1997.
82M. A. Patterson and A. V. Rao, “GPOPS-II: A MATLAB Software for Solving Multiple-Phase Optimal Control Problems Using

hp-Adaptive Gaussian Quadrature Collocation Methods and Sparse Nonlinear Programming,” ACM Transactions on Mathematical
Software, vol. 41, no. 1, pp. 1–37, 2014.

23 of 24

American Institute of Aeronautics and Astronautics

https://spinroot.com/p10/

Figure 8: Variations in the final time tf , the final mass mf and the total solve time versus several key algorithm
parameters. All tests were run using N = 15.

24 of 24

American Institute of Aeronautics and Astronautics

	Introduction
	Primary Contribution

	Considerations for Real-Time Implementation of Non-Convex Problems
	Successive Convexification: Overview
	Initialization Step
	Initial Solution Guess
	Scaling Matrices
	Pre-Parsing

	Convexification Step
	Propagation
	Constraint Linearization

	Solve Step
	Parsing
	Calling the Solver

	Stopping Criteria

	Case Study: Planar Landing Problem
	Initialization Step
	Performance Results

	Conclusions

