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A powered descent problem with a body-fixed thrust vector and independent torque input is considered. By

assuming that the entire descent maneuver takes place in an inertially-fixed plane, we show by using the maximum

principle that the optimal thrust magnitude must lie on its boundary and may exhibit up to four switches with a

min–max–min–max–min profile. The optimal torque input may be singular, and an expression for it is derived.

Non-singular torque arcs are shown to be intimately related to the boundary conditions that are imposed on the

vehicle’s attitude and the presence ofminimum thrust arcs at the beginning and end of the descent. Our results can be

thought of as a generalization of previous work on three-degree-of-freedom translational powered descent; with new

theoretical insights obtained for powered descent problems that consider attitude in the problem formulation.

I. Introduction

P ROPELLANT-OPTIMAL powered descent refers to the prob-
lem of transferring a vehicle from some initial state to some

target state by using rocket-powered engines and/or reaction control
systems while expending the minimum amount of fuel. Research in
the area of optimal powered descent began in earnestwhen theApollo
program set its sights on achieving a manned lunar landing. While
Apollo guidance is not propellant-optimal, its designers were aware
of theoretical results from early work that studied the problem of
propellant-optimal powered descent [1–3]. Lawden derived several
characteristics of optimal thrust programs for general three-degree-
of-freedom (3-DOF) translational guidance trajectories, providing
many key insights [2]. Subsequently, Ref. [4] provided numerical
simulation results for the 3-DOF landing problem that built on
Lawden’s work using newly available software. Several authors have
continued to look for analytical solutions to the first-order necessary
conditions for the 3-DOF problem [5–9], and efficient numerical
routines for obtaining optimal thrust programs (by solving the nec-
essary conditions directly) have been developed [6,7].
Along similar lines, Açıkmeşe and Ploen have shown that these

same analytic results from optimal control theory could be used to
transform the (non-convex) 3-DOF problem into an equivalent convex
optimal control problem [10]. This lossless convexification result
bridged the gap between theoretical understanding of the 3-DOF
guidance problem and the ability to guarantee the convergence of
numerical routines by using convex optimization. The theory of loss-
less convexification has since been extended to include non-convex
thrust pointing constraints [11–13] and minimum-landing error prob-
lems [14]. In addition, the numerical advantages of using convex
optimization to solve the 3-DOF problem have been leveraged to
developviable flight software for planetaryguidancemissions [15–17].
Apollo guidance and each of the references heretofore provided

are 3-DOF translational guidance methods for which attitude com-
mands are (assumed to be) computed separately using a cascaded
control architecture [1]. It is only recently that the generalized six-
degree-of-freedom (6-DOF) guidance problem that considers both
translational and rotational motion of a rigid body has been studied.
A driving requirement behind this extension is the need to account

for vision-based pointing constraints due to modern navigation
sensors [18,19]. Such constraints couple the rotation and translation
of the vehicle,‡ and cannot be easily enforced when the two
are considered separately. Previous work on 6-DOF powered descent
includes the use of model predictive control [20,21] and, more
recently, feedforward trajectory generation techniques [22–26]. In
contrast to the 3-DOFproblem, however, each of theseworks provide
numerical solution techniques to the 6-DOF landing problem; a
characterization of the solution(s) to the necessary conditions of
optimality for the propellant-optimal 6-DOF problem remains an
open problem.
The primary contribution of this paper is the characterization of

optimal solutions for a powered descent problem that lies between the
3-DOF and 6-DOF problems. This problem is referred to as a planar
landing problem and has translational motion that is restricted to a
plane with a single attitude variable. A similar problem was consid-
ered in [4], however, the authors used a simplified problem statement
and as a result did not deduce the switching structure for the optimal
thrust input that is proven in this work. By studying a slightly more
general problem and employing different proof techniques, deeper
insights are revealed and new conclusions are drawn. As a secondary
contribution, the results given here can be used to verify the opti-
mality of 6-DOF numerical algorithms that employ the same control
configuration. By assuming that the vehicle’smotion is restricted to a
plane and that no state constraints are present (or at least are not
active), the 6-DOF problem is equivalent to the planar landing
scenario that is studied here. A suitably chosen set of problem
parameters could therefore be used to assess optimality without
having analytically solved the full 6-DOF problem.
This paper is organized as follows. The problem statement and

notation are discussed in Sec. II, and the main results are presented in
Sec. III. Section IV provides a numerical example that supports the
key observationsmade in the preceding results section. Lastly, Sec. V
summarizes the work and offers concluding remarks.

II. Problem Statement

Consider a body-fixed coordinate frame FB with origin at the
center of mass of a rigid vehicle and coordinate vectors fxB; yB;zBg.
The vehicle’s motion is assumed to be described in an inertial
coordinate frame, FI , with origin at the landing site and coordinate
vectors fxI ; yI ; zI g. Planetary rotation and any atmospheric effects
are ignored for the study of optimal descent trajectories. We further
assume a flat planet, so that the acceleration due to gravity is constant
and gI � −gzI , where g is the acceleration due to gravity at the
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surface of the planet under consideration. If the initial inertial position
and velocity vectors lie in a plane that contains the landing site,
then we may assume without loss of generality§ that the vehicle’s
motion evolves in the yI − zI plane. The inertial position and

velocity vectors can then be written as rI �t� � � y�t� z�t� �⊤ ∈ R2

and vI �t� � � vy�t� vz�t� �⊤ ∈ R2, and the attitude of the vehicle can

be represented by a single angle, which we denote by θ�t� ∈ R, and
define to be the angle formed between zB and zI .
We assume that a single main engine and separate torque-

generating actuators provide the control authority during the descent.
Themain engine is assumed to be rigidly affixed to the vehicle so that
the thrust direction is fixed in the body frame and passes through the
center of mass. The main engine has a variable thrust magnitude
denoted by Γ�t� ∈ R. To control the attitude of the vehicle, a second
torque input, τ�t� ∈ R is assumed to be available that is independent
from the body-fixed thrust. See Fig. 1 for an illustration of the control
configuration.
The corresponding inertial thrust vector can be expressed as the

product of the thrust magnitude and the (unit) direction vector that
is a function of the vehicle’s attitude:

uI �t� � Γ�t�d�t�; d�t� ≔
�
− sin θ�t�
cos θ�t�

�
. (1)

The control variables are therefore the scalar-valued functions
Γ�⋅� and τ�⋅�, each of which are assumed to be piecewise continuous.
The equations of motion are given by

_m�t� � −αΓ�t�; _rI �t� � vI �t�; _vI �t� �
Γ�t�
m�t�d�t� � gI ;

_θ�t� � ω�t�; _ω�t� � τ�t�
J

; (2)

where α is the reciprocal of the effective exhaust velocity,ω�t� ∈ R is
the angular velocity, J is the (constant) inertia about the xB axis in the
body frame. In previous work, we have studied the case of time-
varying inertia and found that the optimal descent trajectories are
insensitive to changes in J due to mass variations [23]. Both control
inputs are assumed to be bounded according to

Γmin ≤ Γ�t� ≤ Γmax; (3a)

−τmax ≤ τ�t� ≤ τmax; (3b)

where Γmin, Γmax, τmax ∈ R�� are positive real numbers.
We constrain the initial and final states according to the following

boundary conditions:

m�t0��mic; rI �t0��rI ;ic; vI �t0��vI ;ic; ωB�t0��0; (4a)

rI �tf�� rI ;f; vI �tf�� vI ;f; θ�tf�� 0; ωB�tf�� 0. (4b)

Note that the initial attitude is not constrained, a feature whose
importance was discussed in [22] (section III.A.3) and plays an
important role in the results of this work as well.
The minimum-fuel planar powered descent guidance problem is

summarized in Problem 1. Given an initial time t0 ∈ R�, we wish to
find the final time, tf ∈ R�� and the piecewise continuous inputsΓ�t�,
τ�t� for t ∈ �t0; tf� that solve the following optimal control problem:

Problem 1:

min
tf;Γ�⋅�;τ�⋅�

Z
tf

t0

Γ�t� dt

subject to∶ �2�; �3�; �4�.

III. Solution to the Optimal Planar Powered
Descent Problem

This section describes the optimal solutions to Problem 1.
The necessary conditions of optimality are obtained from the
maximum principle [27–29], and the specific version that is
used is provided as Theorem III.1. We define the state vector

x�t� � �m�t� rI �t�⊤ vI �t�⊤ θ�t� ω�t� �⊤ ∈ Rn and control vector

u�t� � �Γ�t� τ�t� �⊤ ∈ Rm, where n � 7 and m � 2. The dynamics
in (2) can then be written in the form _x�t� � f�x�t�; u�t�� for a
suitably defined function f. The set of feasible controls given by
(3) is denoted by U ⊂ Rm. Let the set B≔f�x�t0�;t0;x�tf�;tf�jt0�
0;�4a�and�4b�aresatisfiedg describe the set of admissible endpoints

for Problem 1. Next, define the Hamiltonian H ∶R2n�m�1 → R as

H�x�t�; u�t�; λ�t�; λ0� ≔ λ0L�u�t�� � λ�t�⊤f�x�t�; u�t��; (5)

where L�⋅� is the running cost of Problem 1, and �λ0; λ�t�� ∈ Rn�1 is
the costate vector. The (nonlinear) function f is assumed to be at least
once continuously differentiable with respect to x (that is, we assume
that m�t� > 0) and both f and L are assumed to be continuous

functions of u. Finally, we define π�t� ≔ �x��t�; u��t�; λ��t�; λ0��,
where the superscript � denotes an optimal quantity.
Theorem III.1 (maximumprinciple):Let t�f denote the optimal final

time, and u� ∶ �t0; t�f � → U an optimal control with corresponding

state x� ∶ �t0; t�f � → Rn. Then the following statements hold:

1) There exists an absolutely continuous function λ� ∶ �t0; t�f � → Rn

and a constant λ0� ≤ 0 such that �λ0�; λ��t�� ≠ 0 for almost all
t ∈ �t0; t�f �.
2) The following canonical equations hold:

_x��t� � Hλ�π�t��; (6a)

_λ��t� � −Hx�π�t��. (6b)

3) For t ∈ �t0; t�f �, the pointwise maximization criterion holds
almost everywhere:

H�π�t�� � max
w�t�∈U

H�x��t�;w�t�; λ��t�; λ0��. (7)

4) The (2n� 2)-vector

�H�π�t0��;−λ��t0�;−H�π�t�f��; λ��t�f�� (8)

is orthogonal to the tangent space of B at the point
�t0; x��t0�; t�f; x��t�f��.

Fig. 1 Illustration of the planar landing scenario considered in this paper.

§This is provided that there are no state constraints that couple the rotational
and translational motion; see Ref. [22] for an example where out-of-plane
motion can be induced by such a constraint.
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A. Existence of Optimal Solutions to Problem 1

Let us first establish the existence of optimal solutions to Problem 1.
Suppose that there exists a feasible solution toProblem1.LetI ⊂ R be
a compact interval andX ⊂ Rn and V ∈ Rm be suitably defined open
regions such that any feasible solution satisfiesx�t� ∈ X andu�t� ∈ V.
The composite function �L; f� ∶ I × X × V → Rn�1 defined by the
cost function in Problem 1 and the dynamics given in (2) is continuous
for the planar landing problem. Furthermore, by assuming that the
initial attitude satisfies θ�t0� ∈ �−π; π�, the final time is bounded by
some tf;max, and the final mass satisfies m�tf� > 0,¶ the set of admis-

sible endpointsB is a closed set of points inR2n�2 andwemay say that

�t0 x�t0�⊤�⊤ ∈ I × X and �tf x�tf�⊤�⊤ ∈ I × X . The set of admis-

sible controlsU is a compact and convex subset of V since it is defined
by (3). Since the dynamics are affine in control and U is convex, there
exists a compact set R ⊂ I × X such that all feasible trajectories are
contained inR. This follows from Filippov’s theorem [29]. Based on
these observations, if the set

Q��t; x� � fŷ � �y0; y�jy0 ≥ L�w�; y � f�x;w�;w ∈ Ug (9)

is convex, then by theorem 4.4.2 of Ref. [30], an optimal solution

to Problem 1 exists. A vector �y0; y� ∈ Q��t; x�—where

y� �y1 y⊤2 y⊤3 y4 y5 �⊤ for y1, y4, y5 ∈ R and y2, y3 ∈ R2—if

and only if

y0 ≥w1; y1 �−αw1; y2 � vI ; y3 �
w1

m
d�gI ; (10a)

y4�ω; y5�
w2

J
; Γmin≤w1≤Γmax; −τmax≤w2≤ τmax. (10b)

These constitute a set of linear equalities and inequalities, andhence the

set Q��t; x� is convex. As such, an optimal solution to Problem 1
exists, provided that a feasible one does.

B. Optimal Solutions for Problem 1

To simplify notation, we will suppress the argument of time and
superscript � in this section unless they are explicitly needed. The
Hamiltonian associated with Problem 1 is

H� λ0Γ− λmαΓ� λ⊤r v� λ⊤v

�
Γ
m
d� gI

�
� λθωB � λω

τ

J
; (11)

where λ0 ≤ 0 and λ≔ �λm λ⊤r λ⊤v λθ λω�⊤ ∈ R7. From (6b),
the following equations govern the evolution of the optimal costate
vector,

_λm�
Γ
m2

λ⊤v d; _λr�0; _λv�−λr; _λθ�−
Γ
m
λ⊤v dθ; _λω�−λθ; (12)

where dθ � �− cos θ − sin θ�⊤ is the derivative of d with respect
to θ. The transversality conditions derived from Theorem III.1.4
are

H�π�tf�� � 0; λθ�t0� � 0; λm�tf� � 0: (13)

The vector λv is typically referred to as the primer vector for the
3-DOF problem, and provides the optimal thrust direction for that
problem [2]. A key intuitive observation is that when τmax → ∞, the
translational components of the optimal planar solution approach the
optimal 3-DOF solution. This can be seen by noting that d can be
made arbitrarily close to λv∕kλvk2 given an infinite control authority
via the input τ. The desire to point d in this direction follows from the
integral form of the maximum principle given in [28]. However,
limitations on τ and boundary conditions on the attitude variables
render the solutions to the 3-DOF and planar problems distinct in

general. This is because the unit direction λv∕kλvk2 may not be

consistent with the attitude boundary conditions and/or changes

too rapidly for the attitude control system to follow by using the

bounded torque input. We might still expect, however, that in the

presence of a constrained control input τ, the primer vector will be

tracked when possible. This intuition is formalized in the remainder

of this section.
Importantly, we can see that the costate expressions for λr and λv in

(12) match those known to occur for the 3-DOF problem [2,31].

Namely, their solutions are

λr�t� � cr; and λv�t� � −crt� cv; (14)

where cr, cv ∈ R2 are constant vector quantities. Note that these

vectors do not have the same numerical value between the 3-DOF

problem and a planar landing problem; only the analytic expressions

match. For future reference, we define the switching functions

associated with the thrust and torque as follows:

HΓ ≔
1

m
λ⊤v d − αλm � λ0; (15a)

Hτ ≔
1

J
λω. (15b)

We first establish the fact that the costate vector corresponding

to the velocity is non-zero almost everywhere along an optimal

trajectory. This preliminary result is key to the following

analysis.
Lemma III.2:The vector λv�t� is non-zero for almost all t ∈ �t0; tf�.
Proof: The proof is by contradiction. Suppose that λv�t� � 0 for

some interval t ∈ �t1; t2�, where t0 ≤ t1 < t2 ≤ tf. Then, (14) implies

that λv�t� � 0 and λr�t� � 0 for all t ∈ �t0; tf�. By virtue of the

second and third transversality conditions in (13) and the correspond-

ing costate dynamics in (12), we then have that λm�t� � 0 and

λθ�t� � 0 for all t ∈ �t0; tf�. Hence λω�t� � cω for some constant

cω ∈ R. The transversality condition H�π�tf�� � 0 then leads to

λ0 � −cωτ∕JΓ. If cω is zero, then λ0 � 0 and Theorem III.1.1 is

violated, so cω ≠ 0. The switching function Hτ in this case implies

that the optimal torque is then τ � sign�cω�τmax � 	τmax for all

t ∈ �t0; tf�. The dynamic equation governing the angular velocity

from (2) then leads to

ωB�tf� − ωB�t0� �
Z

tf

t0

_ωB dt � 	
Z

tf

t0

τmax

J
dt ≠ 0; (16)

which contradicts the boundary conditions ωB�tf� � ωB�t0� � 0

assumed in (4). Hence we cannot have λv�t� � 0 along an optimal

trajectory. □

The following theorem provides one of the main results of

this paper.
Theorem III.3: The thrust magnitude is non-singular almost every-

where along an optimal solution of Problem 1.
Proof: The proof is performed in two steps, first by assuming that

the torque input is singular, and then by assuming that it is non-

singular. If the torque is singular for some interval of time t ∈ �t1; t2�,
where t0 ≤ t1 < t2 ≤ tf, then the Hamiltonian reveals that we must

have λω � 0 for all t ∈ �t1; t2�. On this same time interval we must

then have _λω � 0 and hence λθ � _λθ � 0. Using the costate equa-

tions in (12) this implies that 0 � λ⊤v dθ since Γ and m are strictly

positive. This tells us that thevector λv is orthogonal todθ for all times

when the torque is singular. Since d and dθ are also orthogonal, we

conclude that d and λv must be either parallel or anti-parallel. The

switching function associated with the thrust magnitude is

HΓ � 1

m
λ⊤v d − αλm � λ0. (17)

¶Similar toRef. [10], the limited fuel carried by thevehicle naturally leads to
the existence of a tf;max and non-zero lower bound on m�tf�.
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For t ∈ �t1; t2� we then have

_HΓ � αΓ
m2

λ⊤v d −
1

m
λ⊤r d� ω

m
λ⊤v dθ −

αΓ
m2

λ⊤v d; (18a)

� −
1

m
λ⊤r d; (18b)

since λ⊤v dθ � 0. Note that if λ⊤r d � 0, then by virtue of

d � 	λv∕kλvk2 we know that λ⊤r λv � 0. From (14) this implies that

−kcrk22t� c⊤r cv � 0 for all t ∈ �t1; t2�. From Lemma III.2 we cannot

have both cr and cv zero, and thus it must be that λr�t� � cr � 0.

Hence _HΓ � 0 only if λr � 0 on the interval �t1; t2�. We can show

that HΓ ≠ 0 when λr � 0 to complete the proof, since even if
_H � 0 we will have established that a singular arc is not possible.

Assume for a contradiction that λr � 0 and HΓ � 0 for t ∈ �t1; t2�.
Using the transversality condition H�π�tf�� � 0, it follows that

H�π�tf�� � λ⊤v gI � 0. Because λv and d are either parallel or anti-

parallel, this implies that d⊤gI � 0. However this condition says that
the attitude isorthogonal to thegravityvector,whichmeans that there is

no ability to thrust in the vertical direction, and hence the vehicle is in

vertical freefall. This contradicts a wide variety of common boundary

conditions. Hence, HΓ ≠ 0 almost everywhere when t ∈ �t1; t2� if
λr � 0. As a result, the thrust must be non-singular.
Assume now that the torque is non-singular, so that τ � 	τmax, for

some interval of time t ∈ �t1; t2�, where t0 ≤ t1 < t2 ≤ tf. In this case,
one may directly solve the attitude state equations on this interval to

yield

θ�t� � θ�t1��ω�t1��t− t1�	
1

2

τmax

J
�t− t1�2; ∀ t∈ �t1; t2�. (19)

The switching function for the thrustmagnitude is still given byHΓ
in (17). If the thrust is singular, then HΓ � 0 for all t ∈ �t1; t2�.
Accordingly, wewould have _HΓ � 0 for t ∈ �t1; t2�. Using (18a) this
implies that

_HΓ � −
1

m
λ⊤r d� ω

m
λ⊤v dθ (20a)

0 � 1

m

d

dt
�λ⊤v d�; (20b)

which implies that λ⊤v d is constant. However, sincewe know the form

of λv as an explicit function of timevia (14), we can combine thiswith

(19) to obtain λ⊤v d as an explicit function of time. The resulting

function can be neither zero nor constant over an interval of time.

Essentially, the vector λv varies as a linear function of time, whereas

the vector d varies sinusoidally with a frequency that increases

quadratically in time. They cannot be perpendicular for an interval

of time, but rather only at finitely many instants of time between t1
and t2. This implies that _HΓ ≠ 0 for almost all t ∈ �t1; t2�. As a result,
HΓ � 0 is not possible except at a finite number of instants over the

interval �t1; t2�. Hence, the thrust magnitude is non-singular almost

everywhere on this interval. □

Theorem III.3 shows that the thrust magnitude must always be

non-singular for an optimal solution, regardless of the value of the

torque input. Since singular torque arcsmay occur, we nowcharacter-

ize what these singular torques can look like. The switching function

for the torque input is given by

Hτ �
1

J
λω. (21)

Along a torque-singular arc, we have Hτ � 0. Taking Lie deriv-

atives along extremal solutions results in

JH�1�
τ � −λθ; (22a)

JH�2�
τ � Γ

m
λ⊤v dθ; (22b)

JH�3�
τ � αΓ2

m2
λ⊤v dθ −

Γ
m
λ⊤r dθ −

Γω
m

λ⊤v d; (22c)

JH�4�
τ �

�
α2Γ3

m3
−
Γω2

m2

�
λ⊤v dθ −

2αΓ2

m2
λ⊤r dθ �

2Γω
m

λ⊤r d

−
�
2αΓ2ω

m2
� Γ

mJ
τ

�
λ⊤v d; (22d)

each of which must be zero along torque-singular arcs. The singular
arc is therefore second-order. As is already known from the proof of

Theorem III.3 the condition (22b) reveals that λ⊤v dθ � 0. Substituting
this into (22c) yields

λ⊤r dθ � −ωλ⊤v d; (23)

along torque-singular arcs.Using (22b) and (23) in (22d) then leads to

τ � 2Jω
λ⊤r d
λ⊤v d

. (24)

The generalized (Legendre–Clebsch) convexity condition further
reveals that

1

J
λ⊤v d ≥ 0; (25)

which, in addition to the fact that λ⊤v dθ � 0, implies that d � λ̂v ≔
λv∕kλvk2 along torque-singular arcs, confirming the intuition that the
same behavior is observed as in the 3-DOF problem.We have shown
here that this consistency is confined to timeswhen the torque input is
singular. This also shows that in cases where the torque is always
singular, the most general thrust magnitude profile is max–min–max
since the equations that govern the optimal planar solutions recover
exactly those of the 3-DOF problem. However, it will not always be

the case that d � λ̂v for an entire planar landing trajectory due to
boundary conditions on the vehicle attitude, vehicle characteristics
(e.g., inertia) and torque limitations. The following result establishes
the switching structure of the optimal thrust input for planar landing
problems.
Lemma III.4: The most general switching structure for the optimal

thrust input of a planar landing problem is min–max–min–max–min.

Proof: Note that when d � λ̂v the most general switching structure
is max–min–max, inherited from the 3-DOF solution as proven above.
To establish the result, we explore how minimum thrust arcs are

possible at the beginning and end of a trajectory. For cases where d ≠
λ̂v at the initial time, the torque input will be used to steer the attitude

towards d � λ̂v. According to the integral form of the maximum
principle [28], this ought to happen as quickly as possible, resulting

in a non-singular torque arc. Hence, the value of the inner product λ⊤v d
will be increasing during this time, implying that its time derivative is
positive. If the torque is non-singular, the sign of (20b) implies that a
switch fromminimum thrust to maximum thrust is possible. When the
initial attitude is free, as in Problem 1, we can expect that this case
would arise infrequently; the optimal solution will be chosen so that its

initial attitude satisfies d � λ̂v. A constrained initial attitude could
therefore induce an initial minimum thrust arc.
On the other hand, the terminal attitude boundary condition may

impose that d ≠ λ̂v at the final time. It is therefore possible that the

inner product λ⊤v d decreases in value at the end of the trajectory.
Hence the sign of (20b) implies that a switch from maximum to
minimum thrust is possible at the end of the trajectory if the torque is
again non-singular during this period. □

The presence of an initial or terminal minimum thrust arc is
governed by the boundary conditions and control constraints of the
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problem, as well as the physical vehicle parameters. Of course, we

note that simply constraining the attitude at either endpoint does

not guarantee the presence of a minimum thrust arc, but does

represent a necessary condition. This is explored in more detail

in Sec. IV.

IV. Numerical Solutions

An example planar landing scenario is now presented whose

optimal solution showcases the characteristics derived in Sec. III.

All numerical results are obtained using GPOPS-II [32], and the

problem parameters are given in Table 1. To highlight the switch-

ing structure of this problem, the boundary conditions were

Table 1 Problem parameters for the planar landing example

Parameter Value Units

mic 2.0 Mass unit (MU)

α 0.0034 Time unit/length unit (TU/LU)

rI ;ic �4.5 16.5 �⊤ LU

rI ;f �0 0 �⊤ LU

vI ;ic �−10.0 −1.5�⊤ LU/TU

vI ;f �0 0 �⊤ LU/TU

ωic 0 rad∕TU
ωf 0 rad∕TU
θf 0 rad

g −1 LU∕TU2

Γmin 1.5 Force unit (FU)

Γmax 6.5 FU

τmax 1 FU LU

J 0.25 MU LU2

a) Initial attitude   (t0) unconstrained b) Initial attitude   (t0) constrained

Fig. 2 Optimal trajectories for the planar landing problems. Only one-quarter of the solution nodes are shown for clarity.

a) Initial attitude   (t0) unconstrained b) Initial attitude   (t0) constrained

Fig. 3 Optimal inputs for the planar landing problems.

Fig. 4 Inner product between the thrust direction d and λ̂v ≡ λv∕kλvk2
along optimal solutions to planar landing problems.
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selected so that a minimum thrust arc was observed at the end of
the trajectory. By re-solving the same problem a second time with
the initial attitude constrained, we are further able to introduce an
initial minimum thrust arc, thus providing an example that high-
lights the min–max–min–max–min switching structure and sup-
ports the observation that the presence of an initial attitude
constraint can induce an initial minimum thrust arc (since d ≠ λ̂v).
The optimal planar trajectories are given in Fig. 2, where the thrust

is always directed along the vertical body axis depicted by the green
lines. The corresponding optimal inputs are given in Fig. 3. When
the initial attitude is unconstrained, it is selected to be in the direction
of λ̂v, as shown by Fig. 4. Accordingly, no minimum thrust arc is
observed at the beginning of themaneuver. By constraining the initial

attitude, Fig. 4 confirms that d ≠ λ̂v near the beginning of the
maneuver, and since the torque is non-singular, a minimum thrust
arc can be seen at the initial time in Fig. 3. In both cases, due to the
boundary condition imposed at the final time that θ�tf� � 0, it

follows that d ≠ λ̂v near the end of the maneuver. Since the torque
is non-singular, a minimum thrust arc is observed at the final time in
each graph of Fig. 3. The optimality of these trajectories is verified by
Fig. 5, where key necessary conditions derived in Sec. III are plotted
against time. In each case the values of λm�tf� and λθ�t0� (when

appropriate) were verified to be less than 10−8.
The torque input in either case can be seen to saturate near the

endpoints for which an attitude constraint is enforced. This would
imply that the primer vector is tracked for as much of the planar
landing solution as possible, with rotational maneuvers occurring as
fast as is feasiblewhenever the satisfaction of a boundary condition is
required. This observation follows naturally from the integral form of
the maximum principle [28], whereby the pointwise maximization
criterion of Theorem III.1.3 is replaced by its integral over �t0; tf�,
revealing the need to have d � λ̂v for as much of the trajectory as
possible.
A key difference between the two planar landing problems shown

here and the 3-DOF problem is the optimal final time, tf. For the 3-
DOF problem, the optimal final time is 9.03 s for the parameters in
Table 1. In contrast, the planar landing scenarios have optimal final
times of 9.32 s when the initial attitude is unconstrained and 11.12 s
when it is constrained. Different final times contribute in particular to
different optimal λv for each problem, and hence different optimal
state and control trajectories.**

The value of the analytic torque from (24) is shown alongside the
numerical results in Fig. 3. These profiles are close to matching, but
slight discrepancies may be caused by the fact that the GPOPS-II
software can have difficulties obtaining solutions when singular arcs
are present; and in particular, when they occur between non-singular
arcs [32].

V. Conclusions

The planar landing problem for which there exists independent
actuation mechanisms that are able to create bounded thrust and
torque was studied. We showed that an optimal solution to this
problem exists whenever a feasible solution does, and that the thrust
magnitudemust always lie at one of the bounds, while the torquemay
be singular along optimal solutions.Moreover, there can be up to four
switches in the optimal thrust with a min–max–min–max–min pro-
file. The minimum thrust arcs at the beginning and end of a trajectory
are governed by the boundary conditions, torque limitations and
physical vehicle parameters. These results provide new theoretical
insights for a powered descent problem beyond the translation-only
3-DOF problem and offer a path towards the understanding of
optimal 6-DOF powered descent problems.
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