DQG: Dual Quaternion Guidance for the SPLICE Project

Taylor P. Reynolds

Presented to: Blue Origin

February 10, 2021

Overview

The SPLICE Project

Problem Formulation

Sequential Convex Programming Implementation

Future Additions and Improvements

Overview

The SPLICE Project

Problem Formulation

Sequential Convex Programming Implementation

Future Additions and Improvements

Safe & Precise Landing - Integrated Capabilities Evolution

DQG: SPLICE Guidance

3/25

DQG Algorithm Development

University of Washington:

- Basic research on:
 - solution of nonconvex OCPs
 - problem formulations for lunar descent
- Develop Matlab-based toolbox to test and compare formulations and solution methods
- Develop flight code prototype in C/C++

Team:

TPR, M. Szmuk, D. Malyuta M. Mesbahi, B. Açıkmeşe

Draper Laboratory:

- Develop cFS application for DQG
- Implement DQG prototype on SPLICE compute hardware

Team:

Javier Doll

Matt Fritz, Tim Barrows

DQG: SPLICE Guidance

Overview

The SPLICE Project

Problem Formulation

Sequential Convex Programming Implementation

Future Additions and Improvements

Dual Quaternions

- A unit dual quaternion, \tilde{q} , satisfies two properties:

$$\tilde{q} = \begin{bmatrix} q_1 \\ q_2 \end{bmatrix}_{8 \times 1} \quad \text{where} \quad q_1^\top q_1 = 1, \quad \text{and} \quad q_1^\top q_2 = 0.$$

- DQG uses a right-handed, Hamiltonian, scalar-last convention
- The geometry of unit dual quaternions in lower dimensions:

Dual Quaternions & Rigid Body Motion

- The unit dual quaternion \tilde{q} represents the pose of $\mathcal{F}_{\mathcal{B}}$ with respect to $\mathcal{F}_{\mathcal{I}}$:

$$\tilde{q} = \begin{bmatrix} q \\ \frac{1}{2}q \otimes r_{\mathcal{B}} \end{bmatrix} \equiv \begin{bmatrix} q \\ \frac{1}{2}r_{\mathcal{I}} \otimes q \end{bmatrix} \quad \text{and} \quad \tilde{\omega} = \begin{bmatrix} \omega_{\mathcal{B}} \\ v_{\mathcal{B}} \end{bmatrix}$$

- The dual velocity $\tilde{\omega}$ is composed of angular velocity and $v_{\mathcal{B}} = \dot{r}_{\mathcal{B}} + \omega_{\mathcal{B}}^{\times} r_{\mathcal{B}}$

Cost Function

 $\max \quad m(t_f)$

Dual Quaternion Dynamics

$$\begin{split} \dot{m} &= -\alpha \| u_{\mathcal{B}} \|_2 \qquad [\text{NC}] \\ \dot{\tilde{q}} &= \frac{1}{2} \tilde{q} \otimes \tilde{\omega} \qquad [\text{NC}] \\ J \dot{\tilde{\omega}} &= \Phi u_{\mathcal{B}} - \tilde{\omega} \oslash J \tilde{\omega} + m \tilde{g}_{\mathcal{B}} \qquad [\text{NC}] \end{split}$$

[C]

- 15-dimensional state vector (1+8+6)
- $u_{\mathcal{B}}$ is thrust vector, $g_{\mathcal{B}}$ is gravity
- matrix Φ maps thrust to a force & torque

Cost Function max $m(t_f)$ **Dual Quaternion Dynamics** $\dot{m} = -\alpha \|u_{\mathcal{B}}\|_2$ [NC] $\dot{\tilde{q}} = \frac{1}{2}\tilde{q}\otimes\tilde{\omega}$ [NC] $J\dot{\tilde{\omega}} = \Phi u_{\mathcal{B}} - \tilde{\omega} \oslash J\tilde{\omega} + m\tilde{a}_{\mathcal{B}}$ [NC] **Control Constraints** $u_{\min} < \|u_{\mathcal{B}}\|_2 < u_{\max}$ [NC] $||u_{\mathcal{B}}||_{2} \leq \sec \delta_{\max} z_{\mathcal{B}}^{\top} u_{\mathcal{B}}$ [C] $-\dot{u}_{z,\max} \leq z_{\mathcal{B}}^{\top} u_{\mathcal{B}} \leq \dot{u}_{z,\max}$ [C] $||E_{xy}u_{\mathcal{B}}||_2 < \dot{\delta}_{\max} z_{\mathcal{B}}^{\top} u_{\mathcal{B}}$ [C]

[C]

- upper/lower throttle constraint
- gimbal angle constraint, $z_{\mathcal{B}}$ is vertical direction
- approx. throttle rate constraint
- approx. gimbal angle constraint

Cost Function

max $m(t_f)$

[C]

Dual Quaternion Dynamics

$\dot{m} = -\alpha \ u_{\mathcal{B}}\ _2$	[NC]
$\dot{ ilde{q}}=rac{1}{2} ilde{q}\otimes ilde{\omega}$	[NC]
$J\dot{\tilde{\omega}} = \Phi u_{\mathcal{B}} - \tilde{\omega} \oslash J\tilde{\omega} + m\tilde{g}_{\mathcal{B}}$	[NC]

Control Constraints

$$\begin{aligned} u_{\min} &\leq \|u_{\mathcal{B}}\|_{2} \leq u_{\max} & [\mathsf{NC}] \\ \|u_{\mathcal{B}}\|_{2} &\leq \sec \delta_{\max} z_{\mathcal{B}}^{\top} u_{\mathcal{B}} & [\mathsf{C}] \\ -\dot{u}_{z,\max} &\leq z_{\mathcal{B}}^{\top} u_{\mathcal{B}} \leq \dot{u}_{z,\max} & [\mathsf{C}] \\ \|E_{xy} u_{\mathcal{B}}\|_{2} &\leq \dot{\delta}_{\max} z_{\mathcal{B}}^{\top} u_{\mathcal{B}} & [\mathsf{C}] \end{aligned}$$

State Constraints

$$\begin{split} -\tilde{q}^{\top} M_{\gamma} \tilde{q} + \|2E_{d} \tilde{q}\|_{2} \cos \gamma_{\max} &\leq 0 \qquad [\mathsf{C}] \\ \tilde{q}^{\top} M_{\theta} \tilde{q} + \cos \theta_{\max} &\leq 0 \qquad [\mathsf{C}] \\ m_{dry} &\leq m \qquad [\mathsf{C}] \\ \|E_{v} \tilde{\omega}\|_{2} &\leq v_{\max} \qquad [\mathsf{C}] \\ \|E_{w} \tilde{\omega}\|_{\infty} &\leq \omega_{\max} \qquad [\mathsf{C}] \end{split}$$

- approach angle (glide slope) and tilt angle expressed as quadratic functions of \tilde{q}

- mass, speed, and angular rate constraints

Cost Function

$m(t_f)$ \max

Dual Quaternion Dynamics

$\dot{m} = -\alpha \ u_{\mathcal{B}}\ _2$	[NC]
$\dot{ ilde{q}} = rac{1}{2} \widetilde{q} \otimes \widetilde{\omega}$	[NC]
$J\dot{\tilde{\omega}} = \Phi u_{\mathcal{B}} - \tilde{\omega} \oslash J\tilde{\omega} + m\tilde{g}_{\mathcal{B}}$	[NC]

Control Constraints

$$\begin{aligned} u_{\min} &\leq \|u_{\mathcal{B}}\|_{2} \leq u_{\max} & [\mathsf{NC}] \\ \|u_{\mathcal{B}}\|_{2} &\leq \sec \delta_{\max} z_{\mathcal{B}}^{\top} u_{\mathcal{B}} & [\mathsf{C}] \\ -\dot{u}_{z,\max} &\leq z_{\mathcal{B}}^{\top} u_{\mathcal{B}} \leq \dot{u}_{z,\max} & [\mathsf{C}] \\ E_{xy} u_{\mathcal{B}}\|_{2} &\leq \dot{\delta}_{\max} z_{\mathcal{B}}^{\top} u_{\mathcal{B}} & [\mathsf{C}] \end{aligned}$$

State Constraints

$-\tilde{q}^{\top} M_{\gamma} \tilde{q} + \ 2E_d \tilde{q}\ _2 \cos \gamma_{\max} \le 0$	[C]
$\tilde{q}^{\top} M_{\theta} \tilde{q} + \cos \theta_{\max} \le 0$	[C]
$m_{dry} \leq m$	[C]
$\ E_v \tilde{\omega}\ _2 \le v_{\max}$	[C]
$\ E_w \tilde{\omega}\ _{\infty} \le \omega_{\max}$	[C]

Boundary Conditions		
$m(t_0)=m_{\it ic}$		[C]
$\tilde{q}(t_0) = b_{\tilde{q}}(q(t_0)),$	$b_f(\tilde{q}(t_f)) \le 0$	[C]
$\tilde{\omega}(t_0) = b_{\tilde{\omega}}(q(t_0)),$	$\tilde{\omega}(t_f) = \tilde{\omega}_f$	[NC]

1

[C] [C]

[C]

Overview

The SPLICE Project

Problem Formulation

Sequential Convex Programming Implementation

Future Additions and Improvements

Sequential Convex Programming

- Solve nonconvex OCP by solving a sequence of convex approximations
- ▶ Initial guess obtained by simply interpolating between current and desired final states
- ► Converged solution satisfies dynamics to pre-determined precision

M. Szmuk et al. JGCD, 2020 | TPR et al. JGCD, 2020.

Solve Step

DQG: SPLICE Guidance

- Each iteration solves a second-order cone program using custom solver BSOCP¹
- BSOCP is written in C++, but can generate C code tailored to the specific problem

OCP

- convex cost function
- nonlinear, differential eq. constraints
- general ineq. and eq. constraints

$$\begin{array}{ll} \min_{u,p} & J(x,u,p) \\ \text{s.t.} & \dot{x} = f(x,u,p) \\ & 0 \geq g(x,u,p) \\ & 0 = h(x,u,p) \end{array}$$

¹D. Dueri, 2018

T. P. Reynolds

SOCP

- linear cost function
- affine, algebraic eq. constraints
- affine or second-order cone ineq. constraints

$$\min_{z} \quad c^{\top} z$$
s.t. $Az = b$
 $z \in \mathcal{C}_L \times \mathcal{C}_{Q_1} \times \cdots \times \mathcal{C}_{Q_m}$

11/25

Solve Step

- Each iteration solves a second-order cone program using custom solver BSOCP¹
- BSOCP is written in C++, but can generate C code tailored to the specific problem

OCP

- convex cost function
- nonlinear, differential eq. constraints
- general ineq. and eq. constraints

SOCP

Convexification

- linear cost function
- affine, algebraic eq. constraints
- affine or second-order cone ineq. constraints

 $\min_{u,p} \quad J(x, u, p) \qquad \qquad \min_{z} \quad c^{\top}z \\ \text{s.t.} \quad \dot{x} = f(x, u, p) \qquad \qquad \text{s.t.} \quad Az = b \\ 0 \ge g(x, u, p) \qquad \qquad z \in \mathcal{C}_L \times \mathcal{C}_{Q_1} \times \cdots \times \mathcal{C}_Q \\ 0 = h(x, u, p) \qquad \qquad z \in \mathcal{C}_L \times \mathcal{C}_{Q_1} \times \cdots \times \mathcal{C}_Q$

¹D. Dueri, 2018

T. P. Reynolds

Solve Step

- Each iteration solves a second-order cone program using custom solver BSOCP¹
- BSOCP is written in C++, but can generate C code tailored to the specific problem

OCP

- convex cost function
- nonlinear, differential eq. constraints
- general ineq. and eq. constraints

$$\min_{u,p} \quad J(x, u, p)$$
s.t. $\dot{x} = f(x, u, p)$

$$0 \ge g(x, u, p)$$

$$0 = h(x, u, p)$$

¹D. Dueri, 2018

SOCP

- linear cost function
- affine, algebraic eq. constraints
- affine or second-order cone ineq. constraints

$$\begin{array}{ll} \min_{z} & c^{\top}z \\ \text{s.t.} & Az = b \\ & z \in \mathcal{C}_{L} \times \mathcal{C}_{Q_{1}} \times \cdots \times \mathcal{C}_{Q_{m}} \end{array}$$

Parsing

T. P. Reynolds

DQG: SPLICE Guidance

Convexification: Propagation

- Assume the control can be affinely interpolated between a set of \boldsymbol{N} time nodes
- Use an exact discretization; solution of linearized ODE via numerical integration
- Defects Δ serve as an indicator of dynamic feasibility
- Properly implemented, this should take roughly $\mathcal{O}(1)\%$ of the DQG's runtime

Convexification

step

Convexification: Constraint Approximation

Control Constraints

$\begin{aligned} u_{\min} &\leq \|u_{\mathcal{B}}\|_{2} \leq u_{\max} \\ \|u_{\mathcal{B}}\|_{2} \leq \sec \delta_{\max} z_{\mathcal{B}}^{\top} u_{\mathcal{B}} \\ -\dot{u}_{z,\max} \leq z_{\mathcal{B}}^{\top} u_{\mathcal{B}} \leq \dot{u}_{z,\max} \\ \|E_{xy} u_{\mathcal{B}}\|_{2} \leq \dot{\delta}_{\max} z_{\mathcal{B}}^{\top} u_{\mathcal{B}} \end{aligned}$

State Constraints

$$\begin{split} -\tilde{q}^{\top} M_{\gamma} \tilde{q} + \|2E_{d} \tilde{q}\|_{2} \cos \gamma_{\max} &\leq 0 \qquad [\mathsf{C}] \quad (\textit{linearized}) \\ \tilde{q}^{\top} M_{\theta} \tilde{q} + \cos \theta_{\max} &\leq 0 \qquad [\mathsf{C}] \quad (\textit{SOC}) \\ m_{\textit{dry}} &\leq m \qquad [\mathsf{C}] \quad (\textit{affine}) \\ \|E_{v} \tilde{\omega}\|_{2} &\leq v_{\max} \qquad [\mathsf{C}] \quad (\textit{SOC}) \\ \|E_{w} \tilde{\omega}\|_{\infty} &\leq \omega_{\max} \qquad [\mathsf{C}] \quad (\textit{affine}) \end{split}$$

[NC] (linearized + SOC)

[] *(SOC)*

[C] *(affine)* [C] *(SOC)*

- Approach cone constraint is not an SOC, must linearize
- Max. violations of approx'd constraints tracked using parameter: δ
- Each constraint enforced at \boldsymbol{N} nodes
- To parse SOCP: can quantify the min. number of variables and rows of $A,\,b$

Convexification: Constraint Approximation

- Specified:
 - initial mass, (inertial) position and velocity, angular rates
 - final attitude, (inertial) velocity, angular rates

$$b_{\tilde{q}}(q(t_0)) = \begin{bmatrix} q(t_0) \\ \frac{1}{2}r_{\mathcal{I}} \otimes q(t_0) \end{bmatrix}$$
$$b_{\tilde{\omega}}(q(t_0)) = \begin{bmatrix} \omega_{\mathcal{B}}(t_0) \\ q(t_0)^* \otimes v_{\mathcal{I}}(t_0) \otimes q(t_0) \end{bmatrix}$$
$$b_f(\tilde{q}(t_f)) = \|2E_d\tilde{q}(t_f) - c'\|_2 - \varepsilon_{\text{miss}}$$
where $E_d = \text{diag} \{0_{4\times 4}, I_4\}$

Convexification

step

Trust Regions and Virtual Control

- Algorithmic modifications to ensure:
 - Each SOCP is feasible and bounded
 - Iterates kept "close" to the reference used for approximation
- Virtual control added to all approximated constraints:

 $[\mathsf{NC}]: \quad h(x) = 0 \qquad \Longrightarrow \qquad [\mathsf{C}]: \quad h(\bar{x}) + \nabla h(\bar{x})^{\top} (x - \bar{x}) + \nu = 0$

where ν is *unconstrained* but highly *penalized* in the cost.

- Trust region added as additional constraints:

$$\|x - \bar{x}\|_2^2 + \|u - \bar{u}\|_2^2 \le \eta$$
 and $\|p - \bar{p}\|_2^2 \le \eta_p$

where η,η_p are chosen by the solver and modestly penalized in the cost.

Sost Function
$$\max \quad m(t_f) \quad - \quad w_{tr}^\top \eta \quad - \quad w_{tr,p} \eta_p \quad - \quad w_{vc} \sum_k \|\nu_k\|_1$$

T. P. Reynolds

DQG: SPLICE Guidance

Solve

step

is unbounded without a trust region

tion with approximated constraint \bar{h}

DQG: SPLICE Guidance

Stopping Criteria

Stopping criteria

Criteria:

	1	small defects & constraint violation	$\max\left\{\max_{k} \Delta_{k}, \delta\right\} \leq \varepsilon_{\Delta}$
	2	small state change	$\max_k \ x_k - \bar{x}_k\ _2 \le \varepsilon_x$
	3	small final mass change	$ m_N - \bar{m}_N \le \varepsilon_m$
Logic:		1 AND (2 OF	R 3)

- $\blacktriangleright\ \varepsilon_\Delta$ measures "feasibility", both dynamic and approx'd constraints
- $\blacktriangleright\ \varepsilon_m$ used to stop if optimality not sufficiently improving
- \blacktriangleright Control changes ignored: large thrust change can have small impact on state trajectory

Overview

The SPLICE Project

Problem Formulation

Sequential Convex Programming Implementation

Future Additions and Improvements

Mission-Specific Initial Guess

- Currently, DQG uses a very simple initialization:

$$x_k = \left(\frac{N-k}{N-1}\right) x_{ic} + \left(\frac{k-1}{N-1}\right) x_{fc} \text{ and } u_k = m_k g_{\mathcal{B}}, \quad k = 1, \dots, N$$

where x_{ic} and x_{fc} are boundary conditions, $g_{\mathcal{B}}$ is gravity in body frame $\mathcal{F}_{\mathcal{B}}$

- This trajectory is not feasible but works well enough and is easy to compute

Better initial guess \Rightarrow fewer DQG iterations \Rightarrow lower runtime

- Idea: For a given mission, create a map from initial condition to initial guess:

$$\Psi: \mathcal{D} \to \mathcal{X} \times \mathcal{U} \times \mathbb{R}_{++}$$
$$x_0 \mapsto \{x_k, u_k, t_f\}_{k=1}^N$$

DQG: SPLICE Guidance

 \mathcal{D}

Custom Conversion to Standard Form

- BSOCP solves a problem in standard form:

$$\begin{array}{ll} \min & c^{\top}z \\ \text{s.t.} & Az = b \\ & z \in \mathcal{C}_L \times \mathcal{C}_{Q_1} \times \cdots \times \mathcal{C}_{Q_m} \end{array}$$

- Two possible methods to define data A, b, c and the cone dimensions:

Generic Parser (Current)

- Ideal for prototyping
- X Can add variables/constraints
- X Opaque problem construction
- X Uses dynamic memory allocation

Handparsing

- X Least flexible
- ✓ Guarantees smallest problem
- Most control over coding
- Uses static memory allocation

Handparsing to Standard Form

20/25

T. P. Revnolds

DQG: SPLICE Guidance

Handparsing to Standard Form

T. P. Revnolds

DQG: SPLICE Guidance

20/25

State-Triggered Constraints (STC)

- STCs are constraints enforced conditionally based on the value of a trigger function

- Equivalently, we can enforce the nonconvex constraint

 $-\min(g(z), 0) h(z) \le 0$

- Models binary decisions using continuous variables
- Can combine trigger/constraint conditions using Boolean AND and OR operations

M. Szmuk et al. JGCD, 2020

State-Triggered Constraints (STC)

- Reconciles vehicle configuration with feasibility of optimal control problem
- Trigger: slant range larger than ρ

 $g(\tilde{q}) = \rho - \|2E_d\tilde{q}\|_2$

- Constraint: line of sight angle to landing target

 $h(\tilde{q}) = \tilde{q}^{\top} M_{\xi} \tilde{q} + \|2E_d \tilde{q}\|_2 \cos \xi_{\max} - \varepsilon$

State-Triggered Constraints (STC)

- Lunar descent orbits characteristically low altitude at large downrange distances
- Trigger: slant range small than ρ

 $q(\tilde{q}) = \|2E_d\tilde{q}\|_2 - \rho$

- Constraint: approach angle to landing target

 $h(\tilde{q}) = -\tilde{q}^{\top} M_{\gamma} \tilde{q} + \|2E_d \tilde{q}\|_2 \cos \gamma_{\max}$

DQG: SPLICE Guidance

Summary

➡ DQG solves a nonconvex optimal control problem in real-time

- parameterizes pose with dual quaternions
- includes several 6-DOF constraints
- uses sequential convex programming

► Part of NASAs SPLICE project to modernize autonomous precision landing

- algorithm dev: UW, Draper, JSC
- HIL/flight demo: Blue Origin, Draper, JSC

▶ Plenty of room for improvement, both research-based and on the DQG implementation

Thank you!

email: tpreynolds6@gmail.com

UW

M. Szmuk D. Malyuta M. Mesbahi B. Açıkmeşe

JSC

- J. M. Carson III
 - R. Sostaric
 - D. Matz E. Braden
- z T. Barrows n R. Loffi

Draper

J. Doll

M. Fritz

U. Lee

A Few Relevant Publications

Algorithm Development

- TPR, M. Szmuk, D. Malyuta, M. Mesbahi, B. Açıkmeşe and J. M. Carson III, "Dual Quaternion Based Powered Descent Guidance with State-Triggered Constraints," J. of Guidance, Control and Dynamics, vol. 43, no. 9, pp. 1584-1599, 2020
- M. Szmuk, TPR, and B. Açıkmeşe, "Successive Convexification for Real-Time 6-DoF Powered Descent Guidance with State-Triggered Constraints," *J. of Guidance, Control, and Dynamics*, vol. 43, no. 8, pp. 1399-1413, 2020
- TPR, D. Malyuta, M. Mesbahi, B. Açıkmeşe and J. M. Carson III, "A Real-Time Algorithm for Non-Convex Powered Descent Guidance," *AIAA SciTech Forum*, Orlando, FL. 2020
- D. Malyuta, TPR, M. Szmuk, M. Mesbahi, B. Açıkmeşe, and J. M. Carson III, "Discretization Performance and Accuracy Analysis for the Powered Descent Guidance Problem," *AIAA SciTech Forum*, Orlando, FL. 2019
 SPLICE
- R. Sostaric, S. Pedrotty, J. M. Carson III, et al., "The SPLICE Project: Safe and Precise Landing Technology Development and Testing," *AIAA SciTech Forum*, Virtual, 2021
- J. M. Carson III, M. M. Munk, R. Sostaric, et al., "The SPLICE Project: Continuing NASA Development of GN&C Technologies for Safe and Precise Landing," *AIAA SciTech Forum*, Orlando, FL. 2020