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Safe & Precise Landing - Integrated Capabilities Evolution
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Objectives

- Modernize precision landing technology
- Create target-agnostic solutions
- Achieve landing accuracy of O(10) m
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Timeline

ALHAT2005-2014

COBALT2015-2017

SPLICE kick-off2018

ConOps, requirements
analysis, tech. dev.2018-2019

Prelim. flight demos,
tech to TRL 5+2020-2021

CLPS demonstration2022-2024

Mission infusion≥ 2024
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Collaborators

- JSC1, LaRC, GSFC, JPL, AFRC, MSFC
- Draper, Blue Origin, Coherent
Applications, Masten Space Systems, ...

- UW, Texas A&M, ...

Today’s Focus

1All funding through NASA’s STMD
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DQG Algorithm Development

University of Washington:
- Basic research on:

- solution of nonconvex OCPs
- problem formulations for lunar descent

- Develop Matlab-based toolbox to test and
compare formulations and solution methods

- Develop flight code prototype in C/C++

Draper Laboratory:
- Develop cFS application for DQG
- Implement DQG prototype on SPLICE
compute hardware

Team:
TPR, M. Szmuk, D. Malyuta
M. Mesbahi, B. Açıkmeşe

Team:
Javier Doll
Matt Fritz, Tim Barrows

T. P. Reynolds DQG: SPLICE Guidance 4/25



Overview

The SPLICE Project

Problem Formulation

Sequential Convex Programming Implementation

Future Additions and Improvements

T. P. Reynolds DQG: SPLICE Guidance 5/25



Dual Quaternions

- A unit dual quaternion, q̃, satisfies two properties:

q̃ =

[
q1

q2

]
8×1

where q>1 q1 = 1, and q>1 q2 = 0.

- DQG uses a right-handed, Hamiltonian, scalar-last convention
- The geometry of unit dual quaternions in lower dimensions:

q1

q2

dimension: 2

q1

q2

dimension: 3

?
dimension: 4
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Dual Quaternions & Rigid Body Motion

- The unit dual quaternion q̃ represents the pose of FB with respect to FI :

q̃ =

[
q

1
2q ⊗ rB

]
≡
[

q
1
2rI ⊗ q

]
and ω̃ =

[
ωB
vB

]
- The dual velocity ω̃ is composed of angular velocity and vB = ṙB + ω×B rB

FI

FB

q

rB

≡
q̃

FI

FB

q

rI
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Optimal Control Problem

max m(tf )Cost Function [C]

ṁ = −α‖uB‖2 [NC]
˙̃q = 1

2 q̃ ⊗ ω̃ [NC]

J ˙̃ω = ΦuB − ω̃ � Jω̃ +mg̃B [NC]

Dual Quaternion Dynamics - 15-dimensional state vector (1+8+6)
- uB is thrust vector, gB is gravity
- matrix Φ maps thrust to a force & torque
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Optimal Control Problem

max m(tf )Cost Function [C]

ṁ = −α‖uB‖2 [NC]
˙̃q = 1

2 q̃ ⊗ ω̃ [NC]

J ˙̃ω = ΦuB − ω̃ � Jω̃ +mg̃B [NC]

Dual Quaternion Dynamics

umin ≤ ‖uB‖2 ≤ umax [NC]

‖uB‖2 ≤ sec δmaxz
>
B uB [C]

−u̇z,max ≤ z>B uB ≤ u̇z,max [C]

‖ExyuB‖2 ≤ δ̇maxz
>
B uB [C]

Control Constraints

- upper/lower throttle constraint
- gimbal angle constraint, zB is vertical direction
- approx. throttle rate constraint
- approx. gimbal angle constraint
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Optimal Control Problem

max m(tf )Cost Function [C]

ṁ = −α‖uB‖2 [NC]
˙̃q = 1

2 q̃ ⊗ ω̃ [NC]

J ˙̃ω = ΦuB − ω̃ � Jω̃ +mg̃B [NC]

Dual Quaternion Dynamics

umin ≤ ‖uB‖2 ≤ umax [NC]

‖uB‖2 ≤ sec δmaxz
>
B uB [C]

−u̇z,max ≤ z>B uB ≤ u̇z,max [C]

‖ExyuB‖2 ≤ δ̇maxz
>
B uB [C]

Control Constraints

−q̃>Mγ q̃ + ‖2Edq̃‖2 cos γmax ≤ 0 [C]

q̃>Mθ q̃ + cos θmax ≤ 0 [C]
mdry ≤ m [C]

‖Evω̃‖2 ≤ vmax [C]
‖Ewω̃‖∞ ≤ ωmax [C]

State Constraints

- approach angle (glide slope) and tilt angle
expressed as quadratic functions of q̃

- mass, speed, and angular rate constraints
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Optimal Control Problem

max m(tf )Cost Function [C]

ṁ = −α‖uB‖2 [NC]
˙̃q = 1

2 q̃ ⊗ ω̃ [NC]

J ˙̃ω = ΦuB − ω̃ � Jω̃ +mg̃B [NC]

Dual Quaternion Dynamics

umin ≤ ‖uB‖2 ≤ umax [NC]

‖uB‖2 ≤ sec δmaxz
>
B uB [C]

−u̇z,max ≤ z>B uB ≤ u̇z,max [C]

‖ExyuB‖2 ≤ δ̇maxz
>
B uB [C]

Control Constraints

−q̃>Mγ q̃ + ‖2Edq̃‖2 cos γmax ≤ 0 [C]

q̃>Mθ q̃ + cos θmax ≤ 0 [C]
mdry ≤ m [C]

‖Evω̃‖2 ≤ vmax [C]
‖Ewω̃‖∞ ≤ ωmax [C]

State Constraints

m(t0) = mic [C]

q̃(t0) = bq̃
(
q(t0)

)
, bf

(
q̃(tf )) ≤ 0 [C]

ω̃(t0) = bω̃
(
q(t0)

)
, ω̃(tf ) = ω̃f [NC]

Boundary Conditions
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Sequential Convex Programming

Initial
guess

Reference
trajectory

Convexification
step

Stopping
criteria

Converged
solution

Solve
step

å Solve nonconvex OCP by solving a sequence of convex approximations
å Initial guess obtained by simply interpolating between current and desired final states
å Converged solution satisfies dynamics to pre-determined precision

M. Szmuk et al. JGCD, 2020 | TPR et al. JGCD, 2020.
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Solve Step
Solve
step

- Each iteration solves a second-order cone program using custom solver BSOCP1

- BSOCP is written in C++, but can generate C code tailored to the specific problem

OCP
- convex cost function
- nonlinear, differential eq. constraints
- general ineq. and eq. constraints

min
u,p

J(x, u, p)

s.t. ẋ = f(x, u, p)

0 ≥ g(x, u, p)

0 = h(x, u, p)

SOCP
- linear cost function
- affine, algebraic eq. constraints
- affine or second-order cone ineq. constraints

min
z

c>z

s.t. Az = b

z ∈ CL × CQ1
× · · · × CQm

1D. Dueri, 2018
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Solve Step

Parsing

Solve
step

- Each iteration solves a second-order cone program using custom solver BSOCP1

- BSOCP is written in C++, but can generate C code tailored to the specific problem

OCP
- convex cost function
- nonlinear, differential eq. constraints
- general ineq. and eq. constraints

min
u,p

J(x, u, p)

s.t. ẋ = f(x, u, p)

0 ≥ g(x, u, p)

0 = h(x, u, p)

SOCP
- linear cost function
- affine, algebraic eq. constraints
- affine or second-order cone ineq. constraints

min
z

c>z

s.t. Az = b

z ∈ CL × CQ1
× · · · × CQm

1D. Dueri, 2018
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Convexification: Propagation
Convexification

step

0 1Normalized Time

St
at
e

x1

x2

x3 · · ·

xN−1

xN

∆1

∆2

∆N−1

0 1Normalized Time

C
on

tr
ol u1

u2

u3

· · ·

uN−1

uN

- Assume the control can be affinely interpolated between a set of N time nodes
- Use an exact discretization; solution of linearized ODE via numerical integration
- Defects ∆ serve as an indicator of dynamic feasibility
- Properly implemented, this should take roughly O(1)% of the DQG’s runtime
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Convexification: Constraint Approximation
Convexification

step

umin ≤ ‖uB‖2 ≤ umax [NC] (linearized + SOC)

‖uB‖2 ≤ sec δmaxz
>
B uB [C] (SOC)

−u̇z,max ≤ z>B uB ≤ u̇z,max [C] (affine)

‖ExyuB‖2 ≤ δ̇maxz
>
B uB [C] (SOC)

Control Constraints

−q̃>Mγ q̃ + ‖2Edq̃‖2 cos γmax ≤ 0 [C] (linearized)

q̃>Mθ q̃ + cos θmax ≤ 0 [C] (SOC)
mdry ≤ m [C] (affine)

‖Evω̃‖2 ≤ vmax [C] (SOC)
‖Ewω̃‖∞ ≤ ωmax [C] (affine)

State Constraints

- Approach cone constraint is not an SOC,
must linearize

- Max. violations of approx’d constraints
tracked using parameter: δ

- Each constraint enforced at N nodes
- To parse SOCP: can quantify the
min. number of variables and rows of A, b
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Convexification: Constraint Approximation
Convexification

step

At t0 :

m(t0) = mic [C] (affine)

q̃(t0) = bq̃
(
q(t0)

)
[C] (affine)

ω̃(t0) = bω̃
(
q(t0)

)
[NC] (linearized)

At tf :

bf
(
q̃(tf )) ≤ 0 [C] (SOC)
ω̃(tf ) = ω̃f [C] (affine)

Boundary Conditions

- Specified:
- initial mass, (inertial) position and velocity,
angular rates

- final attitude, (inertial) velocity, angular rates

bq̃
(
q(t0)

)
=

[
q(t0)

1
2rI ⊗ q(t0)

]

bω̃
(
q(t0)

)
=

[
ωB(t0)

q(t0)∗ ⊗ vI(t0)⊗ q(t0)

]
bf
(
q̃(tf )) = ‖2Edq̃(tf )− c′‖2 − εmiss

where Ed = diag {04×4, I4}
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Trust Regions and Virtual Control
Solve
step

- Algorithmic modifications to ensure:
- Each SOCP is feasible and bounded
- Iterates kept “close” to the reference used for approximation

- Virtual control added to all approximated constraints:

[NC] : h(x) = 0 =⇒ [C] : h(x̄) +∇h(x̄)>
(
x− x̄

)
+ ν = 0

where ν is unconstrained but highly penalized in the cost.
- Trust region added as additional constraints:

‖x− x̄‖22 + ‖u− ū‖22 ≤ η and ‖p− p̄‖22 ≤ ηp

where η, ηp are chosen by the solver and modestly penalized in the cost.

max m(tf ) − w>tr η − wtr,pηp − wvc
∑
k ‖νk‖1Cost Function

T. P. Reynolds DQG: SPLICE Guidance 14/25



Trust Regions and Virtual Control
Solve
step

z2

z1

‖z − z̄‖22 ≤ η

z̄

h(z)

g1(z)

h̄(z, z̄)

g2(z)

Cost Lines

Artificial Infeasibility: no feasible solu-
tion with approximated constraint h̄

z2

z1

‖z − z̄‖22 ≤ η

z̄

h(z)

h̄(z, z̄)
Cost Lines

Artificial Unboundedness: cost function
is unbounded without a trust region
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Stopping Criteria
Stopping
criteria

1 small defects & constraint violation max
{

maxk ∆k, δ
}
≤ ε∆

2 small state change maxk ‖xk − x̄k‖2 ≤ εx

3 small final mass change |mN − m̄N | ≤ εm

Criteria:

1 AND
(

2 OR 3
)Logic:

å ε∆ measures “feasibility”, both dynamic and approx’d constraints
å εm used to stop if optimality not sufficiently improving
å Control changes ignored: large thrust change can have small impact on state trajectory
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Mission-Specific Initial Guess

- Currently, DQG uses a very simple initialization:

xk =

(
N − k
N − 1

)
xic +

(
k − 1

N − 1

)
xfc and uk = mkgB, k = 1, . . . , N

where xic and xfc are boundary conditions, gB is gravity in body frame FB
- This trajectory is not feasible but works well enough and is easy to compute

Better initial guess ⇒ fewer DQG iterations ⇒ lower runtime

- Idea: For a given mission, create a map from initial condition to initial guess:

Ψ : D → X × U × R++

x0 7→ {xk, uk, tf}Nk=1
D

x0
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Custom Conversion to Standard Form

- BSOCP solves a problem in standard form:

min c>z

s.t. Az = b

z ∈ CL × CQ1 × · · · × CQm

- Two possible methods to define data A, b, c and the cone dimensions:

3 Ideal for prototyping
7 Can add variables/constraints
7 Opaque problem construction
7 Uses dynamic memory allocation

Generic Parser (Current)
7 Least flexible
3 Guarantees smallest problem
3 Most control over coding
3 Uses static memory allocation

Handparsing
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Handparsing to Standard Form

Fz
1

Fz
2

Fz
3




z =

block v1

block v2

block v3

FA
P 0 0

FA
C FA

s FA
χ


A =

blo
ck
v 1

blo
ck
v 2

blo
ck
v 3

block c1

block c2

Fb
P

Fb
C


= b

Fc
φ Fc

s Fc
χ

[ ]
c =

- Variables:
v1: used to write dynamics
v2: linear slack variables
v3: trust region and SOC slack variables

- Constraints:
c1: dynamics
c2: all other constraints

TPR et al. SciTech, 2020
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Handparsing to Standard Form

Fz
1
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2
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3




z =
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P 0 0
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
A =
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ck
v 1

blo
ck
v 2

blo
ck
v 3

block c1

block c2

Fb
P

Fb
C


= b

Fc
φ Fc

s Fc
χ

[ ]
c =

- Variables:
v1: used to write dynamics
v2: linear slack variables
v3: trust region and SOC slack variables

- Constraints:
c1: dynamics
c2: all other constraints

å blocks F·· can be pre-parsed
å blocks F·· are updated each iteration

TPR et al. SciTech, 2020
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State-Triggered Constraints (STC)

- STCs are constraints enforced conditionally based on the value of a trigger function

g(z) < 0︸ ︷︷ ︸
trigger condition

⇒ h(z) ≤ 0︸ ︷︷ ︸
constraint condition

- Equivalently, we can enforce the nonconvex constraint

−min
(
g(z), 0

)
h(z) ≤ 0

- Models binary decisions using continuous variables

- Can combine trigger/constraint conditions using Boolean AND and OR operations

M. Szmuk et al. JGCD, 2020
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State-Triggered Constraints (STC)

- Reconciles vehicle configuration with feasbility
of optimal control problem

- Trigger: slant range larger than ρ

g(q̃) = ρ− ‖2Edq̃‖2

- Constraint: line of sight angle to landing target

h(q̃) = q̃>Mξ q̃ + ‖2Edq̃‖2 cos ξmax − ε

ρ

pB

FI

ξ

Range where LOS
constraint is enforced
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State-Triggered Constraints (STC)

- Lunar descent orbits characteristically low
altitude at large downrange distances

- Trigger: slant range small than ρ

g(q̃) = ‖2Edq̃‖2 − ρ

- Constraint: approach angle to landing target

h(q̃) = −q̃>Mγ q̃ + ‖2Edq̃‖2 cos γmax

ρFI
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Summary

å DQG solves a nonconvex optimal control problem in real-time
- parameterizes pose with dual quaternions
- includes several 6-DOF constraints
- uses sequential convex programming

å Part of NASAs SPLICE project to modernize autonomous precision landing
- algorithm dev: UW, Draper, JSC
- HIL/flight demo: Blue Origin, Draper, JSC

å Plenty of room for improvement, both research-based and on the DQG implementation
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Thank you!

email: tpreynolds6@gmail.com

UW JSC Draper
M. Szmuk J. M. Carson III J. Doll
D. Malyuta R. Sostaric M. Fritz
M. Mesbahi D. Matz T. Barrows
B. Açıkmeşe E. Braden R. Loffi

U. Lee
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- TPR, M. Szmuk, D. Malyuta, M. Mesbahi, B. Açıkmeşe and J. M. Carson III, “Dual Quaternion Based Powered Descent
Guidance with State-Triggered Constraints,” J. of Guidance, Control and Dynamics, vol. 43, no. 9, pp. 1584-1599, 2020
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