
Research Computing Club Presents

Hyak Training Session
October 27, 2020

Jesse Prelesnik (Training Coordinator)

UW Tower Data Center

Outline

I. Hyak overview
A. Hyak architecture
B. Logging on to Hyak

II. Navigating Hyak
A. Basic commands
B. Important locations
C. Transferring files

III. Slurm
A. Running a job
B. Commands
C. Modules
D. Interactivity

IV. Other resources
A. Topics outside of this tutorial
B. Places to get help

Where I assume you’re at right now:

“I finished the steps to getting access* to Hyak, but
don’t really know what to do now. How do I get up
and running with the computing I want to do?”

* https://depts.washington.edu/uwrcc/getting-started-2/getting-started/

Hyak overview
Hyak is a “condominium” supercomputing
cluster:

● Research groups own nodes in partitions.
● There’s one partition for all tuition-paying students:
● Student Technology Fee – “stf”

● In addition to our partitions, groups have
access to the build and ckpt partitions

● ~10,000 cores in total
● A typical laptop might have 4-8 cores (CPUs)

Mox nodes:

● 28 cores
● 128 GB RAM
● 92 regular nodes -

stf partitionOne cluster for right now: “mox” (current), soon “clone” (future)
An old cluster, “ikt”, was just retired and is no longer usable

Nodes to interact
with Hyak

Hyak – Mox cluster

Nodes for doing
scientific computing

parallel
computing

…

“Partition”
(Collection of nodes)

Accessing Nodes - Hyak “Architecture”

Login Nodes
(Shared space)

for navigation, not calculation

Your Computer

Hyak / Mox
on your screen, but a

separate computer

Build Nodes

• Transfer files to/from Mox
• Submit work

to other nodes

• For compiling new software
• Can access the internet (!)
• Not allowed to use whole node

Computing Nodes

• High performance, lots of nodes
• Takes batch submission
• Interactive optional
• Actual work is done here

● All nodes share the same filesystem (except /tmp)

via Slurm

login via ssh command
(next slide)

Logging on to Hyak
Terminal – “command line”
Easily accessible on Mac/Linux

“Secure Shell” ssh command
Enables connection to remote machine

ssh <uwnetid>@mox.hyak.uw.edu

Two-factor authentication required
(Through UW-IT)

You’re in!

• Notice you are defaulted to the login node
• Jobs are not run here

“Graphical user interface” (GUI)

No GUI
Navigate via command line

What if I’m on Windows?

New window pops up within Windows to interface with Ubuntu

You’ll need a terminal somehow, and Windows does not provide a good one by default

My preferred route: “Virtual Machine” (VM)
Sets up a mini environment that emulates a different operating system
Lets your Windows machine have some non-Windows capabilities (like terminal)

“Oracle” is one example of a VM Other options for Windows:

● PuTTY (Terminal emulator)
● CygWin (Runtime environment)
● GitBash
● Windows Subsytem for Linux
● WinSCP (just for transfering files)
● cmder
● xshell
● … and probably more!

Ubuntu, a Linux distribution,
has a terminal built-in

How you get a terminal does not matter,
they are all effectively the same

http://wiki.cac.washington.edu/display/hyakusers/Logging+In
More help:

I’m in

… Now what?

Exploring Hyak

Essential First Actions:
● mkdir

○ “Make directory”
○ Create a place to put your files

● vim, emacs, nano (etc.)
○ Command line text editors

Where in the computer am I?
pwd - “Print working (current) directory”

Home computer GUI navigation

Hyak file systems through command line

What folders and files are here?
ls - “List” files in current directory (folder)

Let’s go to where everybody stores files
cd - “Change directory”Each research group has a

folder in gscratch

My home directory (see next slide)

Note: On a computer, a “folder” and a “directory” are the same thing

Important locations on Hyak (get there with cd)
● /gscratch/stf

○ Main work location for stf users
○ Any files untouched for >30 days will be auto-deleted!!

● /usr/lusers/<username>
○ Home directory “~”, you are put here by default
○ Only 10 GB of storage per user

● /tmp
○ Node local storage (separate from shared filesystem)

● /sw
○ All software installs

● /sw/contrib
○ User installed software

● /sw/modules-1.775/modulefiles/contrib
○ User added modulefiles

Where pre-installed
programs (and their

supporting files) are housed

You will seldom
need to go here

Basic shell (bash) commands: Try them out!
File system manipulation:

● ls
○ “List” files in current directory (folder)

● cd
○ “Change directory”

● pwd
○ “Print working (current) directory”

● mkdir
○ “Make directory”

● mv
○ Move (rename) file or directory

● cp
○ “Copy” files and/or directories (-r)

● rm
○ “Remove” files and/or directories (-r)

File editing and compression:

● nano
○ Edit files
○ Other editors: vim, emacs, etc.

● tar
○ Compress for a “tape archive”

● zip (and unzip)
○ Compress via zip algorithm
○ Windows friendly

Many, many more

● man
● find
● top
● kill

● chmod
● curl
● grep
● sed

...

Transferring files
○ Send file To Mox:

scp <path/to/file> <username>@mox.hyak.uw.edu:<path/to/dest>

Lolo:
● Magnetic tape archive (lolo archive)
● For long term storage - only store compressed large files!
● STF location: /archive/hyak/stf
● Transfer files the same as between local and Hyak

Your login from ssh Place on Mox you want
to put the file

○ Get file From Mox:
scp <username>@mox.hyak.uw.edu:<path/to/file> <path/to/dest>

On your computer

Flag –r needed to copy whole folder at once
An alternative copier for synchronizing directories is scopy

scp – Secure Copy

Running Your First Job

Real computing jobs are passed to Slurm

● Ensures fair share between users
● Run interactive or batch jobs
● Allows for running on the ckpt queue

● (more on this later) “Job Scheduler”

https://slurm.schedmd.com/

Partition: whose CPUs/GPUs are we using? (we’ll use stf)
Allocation: which bank account pays for these? (also stf)
Locations: where to write/read files to/from
Resources: how many CPUs/GPUs are needed, and for how long?
Modules: which programs should be loaded to use?

Manages multi-node jobs and
communication protocols

Packaged into a
“Slurm script”

Some information is needed during job setup:

https://slurm.schedmd.com/

o Name is optional

o Request (1) node
o Time – Hours : Minutes : Seconds
o A single node has 28 cores and 128 GB memory
• This dummy job is not parallel, so only (1) core

o Use stf nodes from the stf budget

o Directory “.” is current location to read/write files
(the same place submit.slurm is saved)

o Load in a pre-installed python package

o The real run command

Any line that begins with ## is a comment and is not read
Each line that begins with #SLURM specifies info for slurm

The #SLURM options can be provided in any order

In a text file called “submit.slurm”

Anatomy of a slurm script (written in “bash”)

To execute this job,
sbatch submit.slurm

Then We Wait

● sbatch <script>
○ Submits a script for non-interactive use
○ Used this to submit a job on previous slide

● squeue
○ Flag –u <uwnetid> for only your jobs
○ Specify –p or –A for whole queue

Want to check the status?

● scancel <jobid>
○ Cancels an unfinished job
○ Can only cancel your own

Something wrong? / Taking too long?

Other peoples’
job names and

IDs
(censored)

What it looks like to check queue:

JOBID is used to refer to specific jobs
NODELIST has ID #s for individual nodes being used
ST column is status

R – Running (currently active)
PD – Pending (in queue)
CG – Completing (in process of termination)Always check your output!

Slurm: Commands
● sbatch <script>

○ Submits a script for non-interactive use

● squeue
○ Get status of jobs in batch queue

● scancel <jobid>
○ Cancels an unfinished job

● srun
○ Submits job for interactive use or initiate job steps inside batch script
○ (More on interactive jobs in a minute)

● sinfo
○ Get state of partitions and nodes (is the system operational)

● sacct
○ Gets accounting information about active and completed jobs

I use these
most often

Slurm docs and man <slurm-command> are very useful!
(“man” for manual)

Running Jobs Interactively (command line, not script)
srun -p stf -A stf --ntasks=8 --mem=10G --time=0:10:00 --pty bash –l

● Partition
● Account
● Number of processes (*)
● Amount of RAM
● Time
● Command Be aware of difference between:

● Number of tasks (processes, MPI)
○ --ntasks (-n)
○ --ntasks-per-node

● Number of cpus per task (threads, OpenMP)
○ --cpus-per-task (-c)

https://slurm.schedmd.com/srun.html
man srun

• Much of the same specifications as submit.slurm
• --pty bash –l signifies interactive
• Now you have command line control while accessing

a compute node

• Interactive nodes are computing nodes. You can
submit jobs to other nodes from interactive nodes.

Before running interactive job command

After running interactive job command

https://slurm.schedmd.com/srun.html

Loading software: the modules system
● module avail

○ Show all available modules

● module load <module>
● module unload <module>

○ (Un)load a given module
○ Provide full module name

● module list
○ List loaded modules

● module purge
○ Unload all modules

● module help
○ Print help with commands

Advanced user’s note:
The modules system works by keeping track of and modifying
environment variables (e.g. PATH, LD_LIBRARY_PATH, CPATH, etc.)
https://modules.readthedocs.io/en/latest/

> 400 modules available on Hyak right now!
Useful programs you’d use on your own computer, i.e.
• Python/Anaconda, Gromacs, NAMD, R, Mathematica,

Matlab, Gaussian, compilers and more
Parallel computing tools
• CUDA, IMPI, etc.

… and more

Running module avail

Checkpoint queue – special case

The checkpoint queue allows any user to run on other groups’
unused nodes!

● Partition: ckpt
● Account: <group>-ckpt (stf-ckpt)
● Jobs can be interrupted at any time
● Jobs will be interrupted after 4 contiguous hours
● Jobs will be resubmitted after interruption (if under total requested time limit)
● Your code must be checkpointed to take advantage of this

○ Save a binary file containing state of some objects, restart from logs, etc.
○ Your script should also account for any checkpointing that is done

Topics not covered

● How to install new software
○ Installation and build systems
○ Writing your own modulefiles

● How to parallelize your code
○ Different paradigms for parallelism
○ Data locality and contiguity
○ GPU parallelization
○ Parallel patterns
○ Some programs have parallelization options built-in

● Anything with the cloud (This is the Hyak training session!)
● General architecture of HPC systems

○ Interconnectivity and node locality
○ Physical infrastructure

Where to get help

● Documentation (man or webpages)
● Hyak wiki:

https://wiki.cac.washington.edu/display/hyakusers/WIKI+for+Hyak+users
● Slack channel: https://uw-rcc.slack.com/
● Website: https://depts.washington.edu/uwrcc/
● Emails: hpcc@uw.edu or uwrcc@uw.edu
● Office hours: Fridays from 1-3 pm

https://wiki.cac.washington.edu/display/hyakusers/WIKI+for+Hyak+users
mailto:hpcc@uw.edu
mailto:uwrcc@uw.edu

Happy computing!

