UW Tower Data Center
(Tours available when COVID isn’t around!)

Research Computing Club Presents

Hyak Training Session

February 3, 2021 (3:30pm PST)
Jesse Prelesnik (Training Coordinator)

Outline

Where | assume you're at right now:

“I finished the steps to getting access* to Hyak, but
don’t really know what to do now. How do | get up
and running with the computing | want to do?”

. Hyak overview
A. Hyak architecture
B. Logging on to Hyak

ll. Navigating Hyak
A. Basic commands
B. Important locations
C. Transferring files

IV.

Slurm

A. Running a job
B. Commands
C. Modules

D. Interactivity

Other resources

A. Topics outside of this tutorial
B. Places to get help

* https://depts.washington.edu/uwrcc/getting-started-2/getting-started/

Your PC vs. Hyak

-core laptop

Your computer |ﬂ = PR
|
|
|

-_—em = = o)

“Node”:
Bundle of computing cores

Mox nodes: [

e 28 cores

e 128 GB RAM parallel

e 92 regular nodes - computing
stf partition

Bundle of nodes

Hyak is a “condominium”
supercomputing cluster:

e Research groups own nodes in partitions.
® There’s one partition for all tuition-paying students:
® Student Technology Fee — “stf”

e In addition to our partitions, groups have
access to the build and ckpt partitions

e ~10,000 cores in total
® A typical laptop might have 4-8 cores (CPUSs)

One cluster for right now: “mox” (current),
soon “klone” (soft-launches this quarter)
An old cluster, “ikt”, was just retired and is no longer usable

Accessing Nodes - Hyak “Architecture”

® All nodes share the same filesystem (except /tmp)
® Different “kinds” of nodes have different purposes
« Don’t “clog up” organizational nodes

Hyak / Mox
on your screen, but a
Separate computer

» For compiling new software

Your Computer « Can access the internet (1)
 Not allowed to use whole node
/ for navigation, not calculatio\
] « Transfer files to/from Mox

] * Submit work « High performance, lots of nodes
to other nodes « Takes batch submission

* Interactive optional

» Actual work is done here

login via ssh command
(next slide)

Logging on to Hyak

Terminal — “command line”
Easily accessible on Mac/Linux

You're in!

“Secure Shell” ssh command

Enables connection to remote machine « Notice you are defaulted to the login node

e Jobs are not run here

“Graphical user interface” (GUI)
ssh <uwnetid>@mox.hyak.uw.edu

No GUI
E_ Two-factor authentication required Navigate via command line
—= (Through UW-IT)

What if 'm on Windows?

You'll need a terminal somehow, and Windows does not provide a good one by default

My preferred route: “Virtual Machine” (VM)
Sets up a mini environment that emulates a different operating system
Lets your Windows machine have some non-Windows capabilities (like terminal)

“Oracle” is one example of a VM Other options for Windows:

PuTTY (Terminal emulator)
CygWin (Runtime environment)
GitBash

Windows Subsytem for Linux
WinSCP (just for transfering files)
cmder

xshell

... and probably more!

How you get a terminal does not matter,
they are all effectively the same

New window pops up within Windows to interface with Ubuntu

1

Ubuntu, a Linux distribution,
has a terminal built-in

More help:
http://wiki.cac.washington.edu/display/hyakusers/Logging+In

I'min

... Now what?

Exploring Hyak

Note: On a computer, a “folder” and a “directory” are the same thing

Hyak file systems through command line

Home computer GUI navigation

Essential First Actions:
e mkdir

o “Make directory”
o Create a place to put your files

e vim, emacs, nano (etc.)
o Command line text editors
o These can be a pain, but are important!

Each research group has a
folder in gscratch

Where in the computer am 1?
pwd - “Print working (current) directory”

My home directory (see next slide)

What folders and files are here?
1ls - “List” files in current directory (folder)

Let’s go to where everybody stores files
cd - “Change directory”

Important locations on Hyak (get there with cd)

/gscratch/stf
o Main work location for stf users
o Any files untouched for >30 days will be auto-deleted!!

/usr/lusers/<username>
o Home directory “~”, you are put here by default
o Only 10 GB of storage per user

/tmp

o Node local storage (separate from shared filesystem)
/ sSwW
o All software installs

/sw/contrib
o User installed software

/sw/modules-1.775/modulefiles/contrib

o User added modulefiles

Where pre-installed
programs (and their
supporting files) are housed

You will seldom need to go here, as
programs can be accessed more
easily (in a way we will soon see)

Basic shell (bash) commands: Try them out!

File system manipulation: File editing and compression:
e ls e nano
o “List” files in current directory (folder) o Edit files
e cd o Other editors: vim, emacs, etc.
o “Change directory” e tar
e pwd o Compress for a “tape archive”
o “Print working (current) directory” e zip (and unzip)
e mkdir o Compress via zip algorithm
o “Make directory” o Windows friendly
e mv Many, many more
o Move (rename) file or directory
e cp e man e chmod
o “Copy’ files and/or directories (-r) e find e curl .
® I'm e top e (grep
o “Remove’ files and/or directories (-r) o kill e sed

Transferring files scp — Secure Copy

o Send file To Mox:
scp <path/to/file> <username>@mox.hyak.uw.edu:<path/to/dest>

On your computer Your login from ssh Place on Mox you want
to put the file

o Get file From Mox:
scp <username>@mox.hyak.uw.edu:<path/to/file> <path/to/dest>

Flag —r needed to copy whole folder at once
An alternative copier for synchronizing directories is scopy

Lolo:

Magnetic tape archive (lolo archive)

For long term storage - only store compressed large files!
STF location: /archive/hyak/stf

Transfer files the same as between local and Hyak

Running Your First Job

Real computing jobs are passed to Slurm S I I I r m

e Ensures fair share between users
e Run interactive or batch jobs workload manager

https://slurm.schedmd.com/

“Job Scheduler”

Manages multi-node jobs and
communication protocols

e Allows for running on the ckpt queue
® (more on this later)

Some information is needed during job setup:

Partition: whose CPUs/GPUs are we using? (we’ll use stf)

Allocation: which bank account pays for these? (also stf) Packaged into a
Locations: where to write/read files to/from “Slurm script”
Resources: how many CPUs/GPUs are needed, and for how long?

Modules: which programs should be loaded to use?

https://slurm.schedmd.com/

Anatomy of a slurm script (written in "bash”)

In a text file called “submit.slurm” Any line that begins with ## is a comment and is not read
Each line that begins with #SLURM specifies info for slurm
The #SLURM options can be provided in any order

o Name is optional

(@]

Use stf nodes from the stf budget

Request (1) node

Time — Hours : Minutes : Seconds

A single node has 28 cores and 128 GB memory
This dummy job is not parallel, so only (1) core

* O OO

o Directory “.” is current location to read/write files
(the same place submit.slurm is saved)

o Load in a pre-installed python package

o The real run command To execute this job,

sbatch submit.slurm

Then We Walit

® sbatch <script>
o Submits a script for non-interactive use

o Used this to submit a job on previous slide

Other’peoples’
job’names.and

IDs
(Censared)

Something wrong? / Taking too long?

Want to check the status?

® squeue
o Flag —u <uwnetid> for only your jobs

o Specify —p or —A for whole queue

What it looks like to check queue:

JOBID is used to refer to specific jobs

NODELIST has ID #s for individual nodes being used

® scancel <jobid>

ST

column is status

o Cancels an unfinished job

o Can only cancel your own

Always check your output!

R — Running (currently active)
PD — Pending (in queue)
CG — Completing (in process of termination)

Slurm: Commands

e sbatch <script>
o Submits a script for non-interactive use

e squeue
o Get status of jobs in batch queue | th
e scancel <jobid> Uset f?Se
o Cancels an unfinished job Mmost orten

o Submits job for interactive use or initiate job steps inside batch script
o (More on interactive jobs in a minute)

e sinfo
o Get state of partitions and nodes (is the system operational)
e sacct

o Gets accounting information about active and completed jobs

Slurm docs and man <slurm-command> are very useful!
(“man” for manual)

Running Jobs Interactively (command line, not script)

srun -p stf

Partition

--ntasks=8 --mem=10G --time=0:10:00 --pty bash -1

* Much of the same specifications as submit.slurm

Number of processes (*) .
Amount of RAM

Time

Command

Before running interactive job command

After running interactive job command

Interactive nodes are computing nodes. You can

submit jobs to other nodes from interactive nodes.

« --pty bash —1 signifies interactive
Now you have command line control while accessing
a compute node

Be aware of difference between:
e Number of tasks (processes, MPI)

o --ntasks (-n)
o --ntasks-per-node

e Number of cpus per task (threads, OpenMP)
o --cpus-per-task (-c)

https://slurm.schedmd.com/srun.html

man srun

https://slurm.schedmd.com/srun.html

Loading software: the modules system

e module avail Running module avail
o Show all available modules

e module load <module>

e module unload <module>
o (Un)load a given module
o Provide full module name
e module list
o List loaded modules
e module purge
o Unload all modules

... and more

> 400 modules available on Hyak right now!

Useful programs you’'d use on your own computer, i.e.

e module help « Python/Anaconda, Gromacs, NAMD, R, Mathematica,

o Print help with commands Matlab, Gaussian, compilers and more
Parallel computing tools
+ CUDA, IMPI, etc.

Advanced user’s note:

The modules system works by keeping track of and modifying
environment variables (e.g. PATH, LD_LIBRARY_PATH, CPATH, etc.)
https://modules.readthedocs.io/en/latest/

Checkpoint queue — special case

The checkpoint queue allows any user to run on other groups’
unused nodes!

Partition: ckpt

Account: <group>-ckpt (stf-ckpt)

Jobs can be interrupted at any time

Jobs will be interrupted after 4 contiguous hours

Jobs will be resubmitted after interruption (if under total requested time limit)
Your code must be checkpointed to take advantage of this

o Save a binary file containing state of some objects, restart from logs, etc.
o Your script should also account for any checkpointing that is done

Topics not covered

e How to install new software
o Installation and build systems
o Writing your own modulefiles
o What software would make good examples?
e How to parallelize your own code
o Different paradigms for parallelism
Data locality and contiguity
GPU parallelization
Parallel patterns
Some programs have parallelization options built-in

e Anything with the cloud (This is the Hyak training session!)
e General architecture of HPC systems

o Interconnectivity and node locality
o Physical infrastructure

o O O O

Where to get help

Documentation (man or webpages)

Hyak wiki:
https://wiki.cac.washington.edu/display/hyakusers/WIKIl+for+Hyak+users
Slack channel: https://uw-rcc.slack.com/

Website: https://depts.washington.edu/uwrcc/

Emails: hpcc@uw.edu or uwrcc@uw.edu

Office hours: Fridays from 1-3 pm

https://wiki.cac.washington.edu/display/hyakusers/WIKI+for+Hyak+users
mailto:hpcc@uw.edu
mailto:uwrcc@uw.edu

Happy computing!

