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Philosophy. We want to construct our mathematical understanding. To this
end, our goal is to situate our problems in concrete counting contexts. Most
mathematicians appreciate clever combinatorial proofs. But faced with an iden-
tity, how can you create one?

This course will provide you with some useful combinatorial interpretations,
lots of examples, and the challenge of finding your own combinatorial proofs.
Throughout the next two weeks, your mantra should be to keep it simple.
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1 Basic Tools

1.1 Some Combinatorial Interpretations

First, we need combinatorial interpretations for the objects occurring in our identities. While
there are many possible interpretations, only one is presented for each mathematical object—
trying, of course, to keep it simple.

I have included at least one method to compute each object for completeness though we
will rarely rely on computation.

n!— factorial

Combinatorial: The ways to arrange numbers 1, 2, 3, . . . , n in a line.

Computational: n! = n · (n − 1) · (n − 2) · · · 2 · 1

(

n

k

)

—binomial coefficient, n choose k

Combinatorial: The ways to select a subset containing k elements from the set
[n] = {1, 2, 3, . . . , n}.

Computational:

(

n

k

)

=
n!

k!(n − k)!

((

n

k

))

—n multichoose k

Combinatorial: The ways to cast k votes for elements from the set [n] = {1, 2, 3, . . . , n}.
Computational:

((

n
k

))

=
(

n+k−1
k

)

[

n

k

]

—(unsigned) Stirling number of the first kind

Combinatorial: The ways to arrange n people around k identical (nonempty)
circular tables.

Computational: Recursively

[

n

0

]

=

{

1 n = 0
0 n 6= 0

and n ≥ 1

[

n

1

]

= (n − 1)!. For

k ≥ 2,
[

n

k

]

=

[

n − 1

k − 1

]

+ (n + 1)

[

n − 1

k

]

.
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{

n

k

}

—Stirling number of the second kind

Combinatorial: The ways to distribute n people into k identical (nonempty)
rooms.

Computational: Recursively

{

n

0

}

=

{

1 n = 0
0 n 6= 0

and n ≥ 1

{

n

1

}

= 1. For k ≥ 2,

{

n

k

}

=

{

n − 1

k − 1

}

+ k

{

n − 1

k

}

.

fn—the nth Fibonacci number

Combinatorial: The ways to tile a 1 × n board using 1 × 1 squares and 1 × 2
dominoes.

Computational: f0 = 1, f1 = 1, and for n ≥ 2 fn = fn−1 + fn−2.

or fn =
1√
5



φn+1 −
(

−1

φ

)n+1




where φ = 1+
√

5
2

.

WARNING: You might be used to the Fibonacci numbers defined in the more
traditional way F0 = 0, F1 = 1, and for n ≥ 2 Fn = Fn−1 + Fn−2.

Ln—the nth Lucas number

Combinatorial: The ways to tile a circular 1×n board using 1×1 “squares” and
1 × 2 “dominoes”.

Computational: L0 = 2, L1 = 1, and for n ≥ 2 Ln = Ln−1 + Ln−2.

or Ln = φn +

(

−1

φ

)n

.

Gn—the nth Gibonacci number

Combinatorial: The ways to tile a 1 × n board using 1 × 1 squares and 1 × 2
dominoes where the first tile is distinguished. There are G1 choices for a leading
square and G0 choices for a leading domino.

Computational: G0 and G1 are given and for n ≥ 2 Gn = Gn−1 + Gn−2.

or Gn = αφn + β

(

−1

φ

)n

where α = (G1 + G0/φ)/
√

5 and β = (φG0 − G1)/
√

5.

4



Dn—the nth Derangement number

Combinatorial: The ways to arrange 1, 2, . . . , n in a line so that no number lies
in its natural position.

Computational: Dn = n!
(

1 − 1

1!
+

1

2!
− 1

3!
+ · · · + (−1)n 1

n!

)

.

Cn—the nth Catalan number

Combinatorial: The number of lattice paths from (0, 0) to (n, n) using “right”
and “up” edges and staying below the line y = x.

Computational: Cn =
1

n + 1

(

2n

n

)

[a0, a1, . . . , an]—the finite continued fraction

a0 +
1

a1 + 1

a2 + 1
. . . + 1

an

=
pn

qn

Combinatorial:

Numerator: The ways to tile a 1×n+1 board using squares and dominoes where
cell i can contain half a domino or as many as ai squares, 0 ≤ i ≤ n.

Denominator: The ways to tile a 1× n board using squares and dominoes where
cell i can contain half a domino or as many as ai squares, 1 ≤ i ≤ n.

Computational: Attack with algebra to rationalize the complex fraction.

det(A)—the determinant of the n × n matrix A = {aij}.

Combinatorial: The signed sum of nonintersecting n-routes in a directed graph
with n origins, n destinations, and aij directed paths from origin i to destination
j.

Computational: det(A) =
∑

σ∈Sn

sign(σ)a1σ(1)a2σ(2) · · · anσ(n).

Example: det







1 2 5
5 8 21
0 1 2






= 1·8·2+2·21·0+5·5·1−0·8·5−5·2·2−1·1·21 = 0.
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1.2 Counting Technique 1: Ask a Question and Answer Two Ways

We will use one of two techniques to count an identity. The first poses a question and then
answers it in two different ways. One answer is the left side of the identity; the other answer
is the right side. Since both answers solve the same counting question, they must be equal.

Identity 1 For n ≥ 1,
n−1
∑

k=1

k · k! = n! − 1.

Question: The number of ways to arrange 1, 2, 3, . . . , n except for

Answer 1:

Answer 2:

Identity 2 For k, n ≥ 0,
((

n

k

))

=

(

n + k − 1

k

)

Question: How many ways can we allocate k votes to n candidates?

Answer 1:

Answer 2:
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1.3 Counting Technique 2: Description-Involution-Exception (DIE)

The second technique is to create two sets, count their sizes, and find a correspondence
between them. The correspondence could be one-to-one, many-to-one, almost one-to-one, or
almost many-to-one.

Identity 3 For k, n ≥ 0,
((

n

k

))

=

(

n + k − 1

k

)

Description:

Set 1:

Set 2:

Involution:

Exception:

Identity 4 For n ≥ 0,
n
∑

k=0

(−1)k

(

n

k

)

= 0.

Description:

Set 1:

Set 2:

Involution:

Exception:

What happens is we change the upper index of the summation to something smaller than n? larger than n?
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2 Binomial Identities

2.1 Working Together

Let’s use these techniques to prove some identities.

Identity 5 For 0 ≤ k ≤ n

n! =

(

n

k

)

k!(n − k)!

Identity 6 The Binomial Theorem. For n ≥ 0,

(x + y)n =

(

n

0

)

xny0 +

(

n

1

)

xn−1y1 +

(

n

2

)

xn−2y2 + · · · +
(

n

n

)

x0yn.

Identity 7 For n ≥ 0
n
∑

k=0

(

n

k

)2

=

(

2n

n

)

.
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2.2 On Your Own

Identity 8 For 0 ≤ k ≤ n, (except n = k = 0),
(

n

k

)

=

(

n − 1

k

)

+

(

n − 1

k − 1

)

.

The technique above can be modified to prove:

Identity 9 For n ≥ 0, k ≥ 0, (except n = k = 0),

((

n

k

))

=

((

n

k − 1

))

+

((

n − 1

k

))

.

Identity 10 For n ≥ k ≥ 1,

[

n

k

]

=

[

n − 1

k − 1

]

+ (n − 1)

[

n − 1

k

]

.

Identity 11 For n ≥ k ≥ 1,

{

n

k

}

=

{

n − 1

k − 1

}

+ k

{

n − 1

k

}

.

Identity 12 For n ≥ 1,
n
∑

k=0

(

n

k

)

= 2n.

Identity 13 For n ≥ 1,
n
∑

k=0

k

(

n

k

)

= n2n−1.

Identity 14 For n ≥ q ≥ 0,
n
∑

k=q

(

n

k

)(

k

q

)

= 2n−q

(

n

q

)

Identity 15 For n ≥ m, k ≥ 0,

∑

j

(

m

j

)(

n − m

k − j

)

=

(

n

k

)

.

Identity 16 For n ≥ k ≥ j ≥ 0,

∑

m

(

m

j

)(

n − m

k − j

)

=

(

n + 1

k + 1

)

Identity 17 For nonnegative integers k1, k2, . . . , kn, let N =
∑n

i=1

(

ki

2

)

. Then

∑

1≤i<j≤n

(

ki

2

)(

kj

2

)

+ 3
∑

i=1

n

(

ki + 1

4

)

=

(

N

2

)

.
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2.3 What’s the Parity of
(

n

k

)

?

Pascal’s Triangle
1

1 1
1 2 1

1 3 3 1
1 4 6 4 1

1 5 10 10 5 1
1 6 15 20 15 6 1

1 7 21 35 35 21 7 1
1 8 28 56 70 56 28 8 1

1 9 36 84 126 126 84 36 9 1
1 10 45 120 210 252 210 120 45 10 1

1 11 55 165 330 462 462 330 165 55 11 1

Serpinski-like Triangle
1

1 1
1 0 1

1 1 1 1
1 0 0 0 1

1 1 0 0 1 1
1 0 1 0 1 0 1

1 1 1 1 1 1 1 1
1 0 0 0 0 0 0 0 1

1 1 0 0 0 0 0 0 1 1
1 0 1 0 0 0 0 0 1 0 1

1 1 1 1 0 0 0 0 1 1 1 1

Theorem. For n ≥ 0, the number of odd integers in the nth row of Pascal’s triangle is
equal to 2b where b =the number of 1s in the binary expansion of n.

Question. How many odd numbers occur in the 76th row of Pascal’s triangle?

Lemma.The parity of
(

n
k

)

will be the same as the parity of the number of palindromic
sequences with k ones and n − k zeros.

Description. Binary sequences with k ones and n − k zeros.

Involution.

Exception.

Ans: 76 = (1001100)2. Eight odd numbers.
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Count palindromic sequences with k ones and n − k zeros.
(

even
odd

)

(

even
even

)

(

odd
even

)

(

odd
odd

)

Consequence. If n is even and k is odd, then
(

n
k

)

is even, otherwise,
(

n
k

)

has the same

parity as
(

bn/2c
bk/2c

)

where we round n/2 and k/2 down to the nearest integer, if necessary.

Examples. Compute the parity:
(

76

15

) (

76

36

) (

76

12

)

Think binary!
(

(1001100)2
(0001111)2

) (

(1001100)2
(0100100)2

) (

(1001100)2
(0001100)2

)
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Only way to have an odd number is if the 1s in the binary representation of k are directly
below 1s in binary representation of n.

It tells us exactly which numbers produce odd binomial coefficients:

binary representation k
1001100 76
1001000 72
1000100 68
1000000 64
0001100 12
0001000 8
0000100 4
0000000 0

Extension. There a similar procedure to determine the remainder of
(

n
k

)

when divided by
any prime p?

Lucas’ Theorem. For any prime p, we can determine the remainder of
(

n
k

)

when divided
by p from the base p expansions of n and k. If

n = btp
t + bt−1b

t−1 + · · · + b1p
1 + b0

k = ctp
t + ct−1b

t−1 + · · · + c1p
1 + c0

then
(

n
k

)

and
(

bt

ct

)(

bt−1

ct−1

)

· · ·
(

b1
c1

)(

b0
c0

)

have the same remainder when divided by p.

Example. Calculate the remainder of

(

97

35

)

when divided by 5.

Ans:
(

97

35

)

≡
(

3

1

)(

4

2

)(

2

0

)

≡ 3 mod 5
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