3 Fibonacci Identities

3.1 Tiling with Squares and Dominoes

Definition. Let f_n count the ways to tile a $1 \times n$ board using 1×1 squares and 1×2 dominoes.

Questions to explore.

1. Compute f_4 , f_5 , and f_6 .

- 2. Of the square-domino tilings of the 1×6 board, how many are *breakable* after the second cell? How many have a single domino covering cells two and three?
- 3. For a board of length n (henceforth called an n -board),
	- (a) how many start with a square?
	- (b) how many start with a domino?
	- (c) how many use exactly k dominoes (and what values make sense for k ?)

4. What should f_0 be? What should f_{-1} be?

3.2 Working Together

Identity 18 For $n \geq 0$,

$$
\binom{n}{0} + \binom{n-1}{1} + \binom{n-2}{2} + \cdots = f_n.
$$

Identity 19 For $n \geq 0$,

$$
f_{n-1}^2 + f_n^2 = f_{2n}
$$

Identity 20 For $n \geq 0$,

$$
\sum_{k=0}^{n} f_k^2 = f_n f_{n+1}.
$$

Identity 21 For $n \geq 2$,

$$
3f_n = f_{n+2} + f_{n-2}.
$$

3.3 On Your Own

Identity 22 For $n \geq 0$

$$
f_0 + f_1 + f_2 + \cdots + f_n = f_{n+2} - 1.
$$

Identity 23 For $n \geq 0$,

$$
f_0 + f_2 + f_4 + \cdots + f_{2n} = f_{2n+1}.
$$

Identity 24 For $n \geq 0$,

$$
f_n^2 - f_{n+1}f_{n-1} = (-1)^n
$$

Identity 25 For $n \geq 2$,

$$
2f_n = f_{n+1} + f_{n-2}.
$$

Identity 26 For $n \geq 0$,

$$
\sum_{i\geq 0}\sum_{j\geq 0}\binom{n-i}{j}\binom{n-j}{i}=f_{2n+1}.
$$

$$
\sum_{k=0}^{n} kf_{n-k} = f_{n+3} - (n+3)
$$

Identity 28 For $n \geq 0$,

Identity 27 For $n \geq 0$,

$$
f_{2n-1} = \sum_{k \ge 0} \binom{n}{k} f_{k-1}.
$$

Identity 29 For $n \geq 0$,

$$
2^{n} f_{2n-1} = \sum_{k \ge 0} {n \choose k} f_{3k-1}.
$$

Identity 30 If m|n, then $f_{m-1}|f_{n-1}$ (i.e. $F_m|F_n$)

Hint: If $n = qm$, count $(n - 1)$ -tilings by considering the smallest value j such that the tiling is breakable at cell jm -1 . (Why must such a cell exist?)

3.4 Combinatorial Proof of Binet's Formula

Is it possible to construct a combinatorial proof of identities involving irrational quantities? For example, using the standard Fibonacci Society definition $F_0 = 0$, $F_1 = 1$, and $F_n =$ $F_{n-1} + F_{n-2}$, we have Binet's classic formula

$$
F_n = \frac{1}{\sqrt{5}} \left[\left(\frac{1+\sqrt{5}}{2} \right)^n - \left(\frac{1-\sqrt{5}}{2} \right)^n \right].
$$

A combinatorial proof is possible if we introduce *probability*. Let $\phi = \frac{1+\sqrt{5}}{2}$ $\frac{\sqrt{5}}{2}$.

FACTS:

- \bullet $\left(\frac{1-\sqrt{5}}{2}\right)$ $\frac{-\sqrt{5}}{2}$ = $-1/\phi$.
- $\frac{1}{\phi} + \frac{1}{\phi^2} = 1$.
- Equivalent identity (since $F_n = f_{n-1}$).

$$
f_n = \frac{1}{\sqrt{5}} \left[\phi^{n+1} - \left(\frac{-1}{\phi} \right)^{n+1} \right].
$$

Tile an infinite board by independently placing squares and dominoes, one after the other. At each decision, place a square with probability $1/\phi$ or a domino with probability $1/\phi^2$. The probability that a tiling begins with any particular length n sequence is $1/\phi^n$. Let q_n be the probability that an infinite tiling is breakable at cell n .

 $q_n =$ (1)

Question. What is the probability that an infinite tiling is breakable at cell n?

Answer 1. q_n

Answer 2. One minus the probability that it is not breakable at cell n .

Remember $q_0 = 1$.

Unravel the recurrence in (1) to get

$$
q_n = 1 - \frac{1}{\phi^2} + \frac{1}{\phi^4} - \frac{1}{\phi^6} + \dots + \left(\frac{-1}{\phi^2}\right)^n.
$$

Sum the geometric series.

Thus $f_n = \phi^n q_n =$