
4 Generalizations—Lucas, Gibonacci, and Linear Re-

currences

4.1 Motivating Generalization

Revisit Identity 28. For n ≥ 0,

f2n−1 =
∑
k≥0

(
n

k

)
fk−1.

Question: How many (2n − 1)-tilings?

Answer 1: f2n−1

Answer 2: Let k be the number of squares among the first n tiles.

Was the −1 really necessary in f2n−1 or fk−1 to make this argument fly?

Identity 31 For n ≥ 0, p ≥ −1,

f2n+p =
∑
k≥0

(
n

k

)
fk+p.

Identity seems independent of “initial conditions”. Why not consider a general Fibonacci
sequence (a.k.a. Gibonacci sequence)?

Definition. Let G0 and G1 be specified and for n ≥ 2 define Gn = Gn−1 + Gn−2.

The first few terms in a Gibonacci sequence are
G0, G1,
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4.2 Weighting the Tilings

To transform the square-domino tilings of an n-board that give us the Fibonacci number fn,
to a Gibonacci number Gn we weight the tiling as follows:

weight assigned to tiling ending in a square: G1

weight assigned to tiling ending in a domino: G0

Let wn equal the sum of the weights of the length n-tilings.
Questions to explore.

1. Compute w1, w2, and w3.

2. For a board of length n (henceforth called an n-board),

(a) what is the total weight attributable to tilings that start with a square?

(b) what is the total weight attributable to tilings that start with a domino?

3. What should w0 be?

So wn = Gn for n ≥ 0.

Combinatorial Interpretation. For a Gibonacci sequence G0, G1, G2, . . ., the Gibonacci
number Gn is the total weight of all square-domino tilings of length n where tilings ending
withe a square have weight G1 and tilings ending with a domino have weight G0.
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4.3 Working Together

Identity 32 For m, n ≥ 0,

Gm+n = Gmfn + Gm−1fn−1.

Identity 33 For n ≥ 0,

G0 + G1 + G2 + · · · + Gn = Gn+2 −G1.

Identity 34 For n ≥ 1,

Gn+1Gn−1 − G2
n = (−1)n(G2

1 − G0G2).

Identity 35 For n ≥ 0,

G2n =
∑
k≥0

(
n

k

)
Gk.

Identity 36 For n ≥ 2,
Gn+2 + Gn−2 = 3Gn.
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4.4 On Your Own

Of special note is the Lucas sequence, the so-called companion sequence to the Fibonaccis.
Here L0 = 2, L1 = 1 and for n ≥ 2 Ln = Ln−1 + Ln−2. While weighted tilings work fine, we
could reinterpret Lucas numbers as circular tilings. (See Section 1.1.)

Identity 37 For n ≥ 1,
Gn = G0fn−2 + G1fn−1.

Identity 38 For n ≥ 0,

G1 +
n∑

k=1

G2k = G2n+1.

Identity 39 For n ≥ 0,

G0G1 +
n∑

k=1

G2
k = GnGn+1.

Identity 40 For n ≥ 0,
5fn = Ln + Ln+2

Identity 41 For n ≥ 0,
L2

n = L2n + (−1)n · 2.

Identity 42 Let G0, G1, G2, . . . and H0, H1, H2, . . . be Gibonacci sequences. Then for 0 ≤
m ≤ n,

GmHn − GnHm = (−1)m(G0Hn−m − Gn−mH0).

Identity 43 For n ≥ 0,

2nG2n =
∑
k≥0

(
n

k

)
G3k.
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4.5 Weighting tiles individually

For the Gibonacci numbers, we weighted the tiling based on the last tile used (G0 if it ended
in a domino and G1 if it ended in a square.) We have seen, that sometimes it was simpler
to think of the weight as being attached to the last tile itself. We could do this if the rest
of the board had “weight 1” and the weight obtained by concatenating two boards is the
product of the weights of its parts. This leads to the following idea:

Definition. The weight of a tiling T , denoted w(T ), is the product of the weight of the
individual tiles. The total weight for tilings of length n, denoted tn, is the sum of the weights
of all tilings of length n.

Example. Suppose we tiling n-boards with squares of weight s and dominoes of weight d.
Find t1, t2, t3, t4.

Can you find a recurrence to express tn?

What are the initial conditions for the situation described above?

For general linear recurrences of order 2

Combinatorial Interpretation. Let s, d, a0, a1 be given and for n ≥ 2, define

an = san−1 + dan−2.

For n ≥ 1, an is the total weight of length n-tilings created from weight s squares and weight
d dominoes except for the last tile, which may be a weight a1 square or a weight da0 domino.
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For the three identities below, we will assume ideal initial conditions: suppose a0 = 1, a1 = s
and for n ≥ 2, an = san−1 + tan−2.

Identity 44 For m, n ≥ 1,
am+n = aman + tam−1an−1.

Identity 45 For n ≥ 2,

an − 1 = (s − 1)an−1 + (s + t − 1)
n−1∑
k=1

ak−1.

Identity 46 For any 1 ≤ c ≤ s, for n ≥ 0,

an − cn = (s − c)an−1 + ((s − c)c + t)
n−1∑
k=1

ak−1c
n−1−k.
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4.6 A Gibonacci Magic Trick

Secretly write a positive integer in row 1
and another positive integer in row 2.

row integers
1
2
3
4
5
6
7
8
9
10

Next add those numbers together and put
the sum in row 3. Add row 2 and row 3
and place the answer in row 4. Continue
in this fashion until numbers are in rows
1 through 10. Now using a calculator, if
you wish, add all the numbers in rows 1
through 10 together.

While the volunteer is adding, the math-
emagician glances at the sheet of numbers
for just a second and instantly reveals the
sum. How?

Suppose G0 = x and G1 = y are our secret
numbers....

row integers
1 x
2 y
3
4
5
6
7
8
9
10

As a final flourish to the mathemagician’s performance he adds, “Now using a calculator,
divide the number in row 10 by the number in row 9 and announce the first three digits of
your answer. What’s that you say? 1.61? Now turn over the paper and look what I have
written.” The back of the paper says, “I predict the number 1.61.”
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Why does the ratio work?

For any two fractions a
b

< c
d

with positive numerators and denominators, it is
easy to show that

a

b
<

a + c

b + d
<

c

d
.

What are the implications of this for (row 10)/(row 9)?
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