5 Continued Fractions

5.1 Introductions and Explorations

Definition. Given integers $a_0 \ge 0$, $a_1, \le 1, a_2 \ge 1, \ldots, a_n \ge 1$, define *finite continued* fraction, denoted $[a_0, a_1, \ldots, a_n]$, to be the fraction in lowest terms for

$$a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{\ddots + \frac{1}{a_n}}}}$$

Compute:

[3, 4, 5, 2]

and

[2, 5, 4, 3]

Find finite continued fractions that represent 37/17 and 9/5.

Understanding Continued Fractions Through Algebra

Suppose
$$[a_0, a_1, \dots, a_n] = \frac{p(a_0, a_1, \dots, a_n)}{q(a_0, a_1, \dots, a_n)}$$
. Then
 $a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{\ddots + \frac{1}{a_n}}}} = a_0 + \frac{1}{\frac{p(a_1, \dots, a_n)}{q(a_1, \dots, a_n)}}$

Initial conditions? $p(a_0)$ $q(a_0)$ $p(a_0, a_1)$ $q(a_0, a_1)$

This yields the following relations for the numerator and denominator of finite continued fractions:

$$p(a_0, a_1, \dots, a_n) = a_0 p(a_1, \dots, a_n) + p(a_2, \dots, a_n)$$

$$q(a_0, a_1, \dots, a_n) = p(a_1, \dots, a_n)$$

Counting Context

Let $K(a_i, a_{i+1}, \ldots, a_j)$ be the total weight of the square-domino tilings of an $1 \times (j-i+1)$ board (with cell indexed from *i* to *j*) where dominoes have weight 1 and a square on cell *k* has weight $a_k, i \leq k \leq j$.

Compute K(3, 4, 5, 2).

Find a recurrence for $K(a_0, a_1, a_2, \ldots, a_n)$ based on the first tile.

Initial conditions:

$$K(a_0) = K(a_0, a_1) =$$

Combinatorial Consequence. The finite partial fraction

$$[a_0, a_1, \dots, a_n] = \frac{K(a_0, a_1, \dots, a_n)}{K(a_1, \dots, a_n)}.$$

5.2 Working Together

Theorem 2 Reversing the entries in a finite continued fraction does not change the value of the numerator.

Definition. An *infinite continued fraction* $[a_0, a_1, a_2, \ldots] = \lim_{n \to \infty} [a_0, a_1, \ldots, a_n]$. The finite approximation $[a_0, a_1, \ldots, a_n] = r_n = \frac{p_n}{q_n}$ is called a *convergent* of the continued fraction.

Identity 47 The difference between consecutive convergents of $[a_0, a_1, \ldots]$ is:

$$r_n - r_{n-1} = \frac{(-1)^{n-1}}{q_n q_{n-1}}.$$

Equivalently, after multiplying both sides by q_nq_{n-1} , we have

$$p_n q_{n-1} - p_{n-1} q_n = (-1)^{n-1}$$

One consequence is that p_n/q_n is in lowest terms since we have an integer combination of p_n and q_n that equals ± 1 .

Identity 48 The difference between every other convergent of $[a_0, a_1, \ldots]$ is:

$$r_n - r_{n-2} = \frac{(-1)^n a_n}{q_n q_{n-2}}.$$

Equivalently, after multiplying both sides by q_nq_{n-2} , we have

$$p_n q_{n-2} - p_{n-2} q_n = (-1)^n a_n.$$

How can you use the last two identities to see that infinite continued fractions always converge (and to an irrational number at that!)

Identity 49 $[a_0, a_1, \ldots, a_{n-1}, 1] = [a_0, a_1, \ldots, a_{n-1} + 1]$

5.3 On Your Own

Prove the following by direct combinatorial argument.

Identity 50 For $n \ge 0$, $[a_0, a_1, \ldots, a_n] = [1, 1, \ldots, 1] = \frac{f_{n+1}}{f_n}$

Identity 51 For $n \ge 0$, $[a_0, a_1, a_2, \dots, a_n] = [3, 1, 1, \dots, 1] = L_{n+2}/f_n$.

Identity 52 For $n \ge 1$, let $[a_0, a_1, a_2, \dots, a_n] = [1, 1, \dots, 1, 3] = L_{n+2}/L_{n+1}$.

Identity 53 For $n \ge 1$, let $[a_0, a_1, a_2, \dots, a_n] = [4, 4, \dots, 4, 3] = f_{3n+3}/f_{3n}$.

Identity 54 For $n \ge 1$, let $[a_0, a_1, a_2, \dots, a_n] = [4, 4, \dots, 4, 4] = f_{3n+5}/f_{3n+2}$.

Problem. Use Identities 47 and 48 to show that infinite continued fractions are well defined (i.e. the defining limit actually exists).

Problem. If an infinite continued fraction $[a_0, a_1, \ldots]$ converges to r, can you show that r must be irrational?

Hint: Show that $0 < |r - \frac{p_n}{q_n}| < \frac{1}{q_n^2}$. Then assume that r is rational to arrive at a contradiction.

Theorem 3 Any prime of the form 4m + 1 can be (uniquely) written as the sum of the squares of two positive integers.

Examples. Write 5, 13, and 17 as the sum of two squares of two positive integers.

Proof. Suppose that p = 4m + 1 is prime and consider the continued fraction expansions of

$$\frac{p}{1}, \frac{p}{2}, \cdots, \frac{p}{2m}.$$