
6.4 Beyond DIE—a.k.a. “What happens after you DIE?”

This identity requires the twist of iterated involutions.

Identity 74
n
∑

j=1

n
∑

k=1

(−1)j+k

(

n − 1

j − 1

)(

n − 1

k − 1

)(

j + k

j

)

= 2.

Interpret Quantity.
(

n−1
j−1

)(

n−1
k−1

)(

j+k

j

)

Set P.

Set N.

Correspondence.

In the preceding analysis, elements 1 and n+1 represented the guaranteed members of X and Y respectively.
There is no reason to believe we are restricted to specifying only one member of each set. Why not two?
three? Why not specify a members of X and b members of Y ? Originally, X and Y were selected from
disjoint sets of size n. Did they have to be the same size? Why not choose X from an n-set and Y from an
m-set? With very little additional effort, you can modify the above description, involutions, and exceptions
to obtain the following generalization:

Identity 75
n
∑

j=a

m
∑

k=b

(−1)j+k

(

n − a

j − a

)(

m − b

k − b

)(

j + k

j

)

=

(

a + b

n − m + b

)

.
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6.5 Binet Revisited

You are now prepared for one last attack of Binet’s formula through finite weighted colored
tilings. If φ = 1+

√
5

2
, then φ = 1−

√
5

2
and Binet’s formula can be expressed as

fn =
1√
5
(φn+1 − φ

n+1
).

Definition. Let Bn be the total weight of a square domino tiling of a 1 × n board where
weights of tiles are assigned as follows:

tile type tile location weight assigned

domino anywhere 1

white square any cell ≥ 2 φ

white square cell 1
φ2

√
5

black square any cell ≥ 2 φ

black square cell 1
−φ

2

√
5

Compute B0, B1, B2

For n ≥ 2, find a recurrence for Bn based on the weight of the last tile.

So Bn = fn.
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“Involution” Gather tilings that add to zero:

Exceptions

7 Determinants

Calculate the following determinants:

∣

∣

∣

∣

∣

1 1
10 11

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

1 2 5
5 8 21
0 1 2

∣

∣

∣

∣

∣

∣

∣

=

In general
∣

∣

∣

∣

∣

a11 a12

a21 a22

∣

∣

∣

∣

∣

= a11a22 − a12a21

∣

∣

∣

∣

∣

∣

∣

a11 a12 a13

a21 a22 a23

a31 a32 a33

∣

∣

∣

∣

∣

∣

∣

=

What about
∣

∣

∣

∣

∣

∣

∣

∣

∣

a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44

∣

∣

∣

∣

∣

∣

∣

∣

∣

=
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7.1 The Big Formula

The determinant of an n × n matrix A = {aij} is

det(A) =
∑

σ∈Sn

sign(σ)a1σ(1)a2σ(2) · · · anσ(n).

A permutation σ of Sn is an arrangement of [n] (there are n! of these). In terms of a matrix,
it corresponds to an n× n matrix of 1s and 0s where there is exactly one 1 in each row and
column.

Example. Find the 6 × 6 matrices corresponding to the following permutations.

123456 145236 534621

The sign(σ) is ±1 depending on parity of the number of row exchanges (transpositions)
needed to transform it to the identity. (Even → +1; Odd → −1.)

Permutations of S3 For each permutation matrix below determine the corresponding per-
mutation of [3] and the sign of the permutation.







1 0 0
0 1 0
0 0 1













1 0 0
0 0 1
0 1 0













0 1 0
1 0 0
0 0 1













0 1 0
0 0 1
1 0 0













0 0 1
1 0 0
0 1 0













0 0 1
0 1 0
1 0 0
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Check your Understanding. Use the big formula to compute

det(A) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

2 5 14 23
1 3 9 15
0 1 4 7
0 0 1 2

∣

∣

∣

∣

∣

∣

∣

∣

∣

=

This is a nice answer. Our goal will be to “see” why.

7.2 Matrices from Determined Ants

Given a directed graph with n origins (the ants) and n destinations (the food)

create a matrix A where entry aij represents the number of paths for ant i to get to food j.

A =

1

2

3

4



































14 23

9 15



































.
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7.3 Determinants are Really Alternating Sums

If A is an n × n matrix, then

det(A) =
∑

σ∈Sn

sign(σ)a1σ(1)a2σ(2) · · · anσ(n).

Interpret Quantity. a1σ(1)a2σ(2) · · · anσ(n).

n-routes in a directed graph

Set P.

Set N.

Correspondence.

So the determinant is the signed sum of nonintersecting n-routes.

Revisit our original determinants. Can we create meaningful directed graphs to enable
our calculation of the determinants?

∣

∣

∣

∣

∣

∣

∣

∣

∣

2 5 14 23
1 3 9 15
0 1 4 7
0 0 1 2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 1
10 11

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 2 5
5 8 21
0 1 2

∣

∣

∣

∣

∣

∣

∣
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7.4 Working Together

det































(

0
0

) (

1
0

) (

2
0

) (

3
0

)

(

1
1

) (

2
1

) (

3
1

) (

4
1

)

(

2
2

) (

3
2

) (

4
2

) (

5
2

)

(

3
3

) (

4
3

) (

5
3

) (

6
3

)































= 1 det































(

n

0

) (

n+1
0

) (

n+2
0

) (

n+3
0

)

(

n+1
1

) (

n+2
1

) (

n+3
1

) (

n+4
1

)

(

n+2
2

) (

n+3
2

) (

n+4
2

) (

n+5
2

)

(

n+3
3

) (

n+4
3

) (

n+5
3

) (

n+6
3

)































= 1.

det











































(

n

0

) (

n+1
0

) (

n+2
0

)

· · ·
(

n+k

0

)

(

n+1
1

) (

n+2
1

) (

n+3
1

)

· · ·
(

n+k+1
1

)

(

n+2
2

) (

n+3
2

) (

n+4
2

)

· · ·
(

n+k+2
2

)

...
...

...
. . .

...

(

n+k

k

) (

n+k+1
k

) (

n+k+2
k

)

· · ·
(

n+2k

k

)











































= 1

det



























2 1 0 0 . . . 0
1 2 1 0 . . . 0

0 1 2 1
. . . 0

...
. . .

. . .
. . .

. . . 0
...

...
. . . 1 2 1

0 . . . . . . 0 1 2



























= n + 1 det

[

fm−1 fm

fm fm+1

]

= (−1)m+1.

Assume matrix is n × n.
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7.5 On Your Own

1. det

[

fm−r fm+s−r

fm fm+s

]

= (−1)m−rfr−1fs−1.

2. det







fm fm+p fm+q

fm+r fm+p+r fm+q+r

fm+s fm+p+s fm+q+s






= 0.

3. det

[

Gm−1 Gm

Gm Gm+1

]

= (−1)m−1(G0G2 −G2
1).

4. For j ≥ 1, det



























j 1 0 0 . . . 0
1 j 1 0 . . . 0

0 1 j 1
. . . 0

...
. . .

. . .
. . .

. . . 0
...

...
. . . 1 j 1

0 . . . . . . 0 1 j



























= An

where A0 = 1, A1 = j, and for n ≥ 2, An = jAn−1 − An−2. Note this also equals the

alternating sum
∑n

k=0(−1)k
(

n−k

k

)

jn−2k.

5. The nth Catalan number Cn = 1
n+1

(

2n

n

)

counts the number of lattice paths from (0, 0)

to (n, n) using “right” and “up” edges and staying below the line y = x. If

M t
n =













Ct Ct+1 · · · Ct+n−1

Ct+1 Ct+2 · · · Ct+n

...
. . .

...
Ct+n−1 Ct+n · · · Ct+2n−2













,

show that det(M0
n) = 1, det(M1

n) = 1, and det(M2
n) = n + 1.

6. Define

St
n =













Ct + Ct+1 Ct+1 + Ct+2 . . . Ct+n−1 + Ct+n

Ct+1 + Ct+2 Ct+2 + Ct+3 . . . Ct+n + Ct+n+1
...

...
. . .

...
Ct+n−1 + Ct+n Ct+n + Ct+n+1 . . . Ct+2n−2 + Ct+2n−1













.

Show that det(S0
n) = f2n and det(S1

n) = f2n+1.
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7.6 Classic Properties of Determinants

Suppose that A, B are n × n matrices.

• The determinant changes sign when two rows are exchanged.

• If two rows of A are equal, then det(A) = 0.

• A matrix with a row of zeroes has determinant equal to 0.

• det(A) = det(AT ).

• det(A) det(B) = det(AB).

7.7 Vandermonde Determinant

Just as we generalized from counting tilings to summing weighted tilings, we can move from
counting (nonintersecting) n-routes to summing the weights of the n-routes — just weight
the edges of the directed graphs. You probably figured this out already when you tackled
some of the previous determinants. This time we will weight edges with indeterminants.

Theorem 4 The Vandermonde matrix, Vn = [xj−1
i ] for 1 ≤ i, j ≤ n, has the determinant

detVn =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 x1 x2
1 · · · xn−1

1

1 x2 x2
2 · · · xn−1

2

1 x3 x2
3 · · · xn−1

3
...

...
...

. . .
...

1 xn x2
n · · · xn−1

n

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

=
∏

1≤i<j≤n

(xj − xi).
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Getting a feel for the theorem. Compute

det











1 1 1 1
1 2 4 8
1 3 9 27
1 4 16 64











det

















1 1 1 1 1
1 2 4 8 16
1 3 9 27 81
1 4 16 64 256
1 5 25 125 625

















We will assign weights to the n × n integer lattice so that the total weight of the paths
between origin i and destination j coincide with the entry x

j−1
i . Then we compute weight of

the nonintersecting n-route.
Concretely working with n = 4.

detV4 =

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 x1 x2
1 x3

1

1 x2 x2
2 x3

2

1 x3 x2
3 x3

3

1 xn x2
n x3

n

∣

∣

∣

∣

∣

∣

∣

∣

∣

= (x4 − x3)(x4 − x2)(x4 − x1)(x3 − x2)(x3 − x1)(x2 − x1).

Now extend this idea to an n × n matrix!
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For future questions, identity challenges, and sharing your successes, I’d love to hear from
you at jjquinn@u.washington.edu.
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