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Philosophy. We want to construct our mathematical understanding. To this
end, our goal is to situate our problems in concrete counting contexts. Most
mathematicians appreciate clever combinatorial proofs. But faced with an iden-
tity, how can you create one?

This course will provide you with some useful combinatorial interpretations,
lots of examples, and the challenge of finding your own combinatorial proofs.
Throughout the next two weeks, your mantra should be to keep it simple.
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1 Basic Tools

1.1 Some Combinatorial Interpretations

First, we need combinatorial interpretations for the objects occurring in our identities. While
there are many possible interpretations, only one is presented for each mathematical object—
trying, of course, to keep it simple.

I have included at least one method to compute each object for completeness though we
will rarely rely on computation.

n!— factorial

Combinatorial: The ways to arrange numbers 1, 2, 3, . . . , n in a line.

Computational: n! = n · (n − 1) · (n − 2) · · · 2 · 1

(

n
k

)

—binomial coefficient, n choose k

Combinatorial: The ways to select a subset containing k elements from the set
[n] = {1, 2, 3, . . . , n}.

Computational:

(

n

k

)

=
n!

k!(n − k)!

((

n
k

))

—n multichoose k

Combinatorial: The ways to cast k votes for elements from the set [n] = {1, 2, 3, . . . , n}.
Computational:

((

n
k

))

=
(

n+k−1
k

)

[

n
k

]

—(unsigned) Stirling number of the first kind

Combinatorial: The ways to arrange n people around k identical (nonempty)
circular tables.

Computational: Recursively

[

n

0

]

=

{

1 n = 0
0 n 6= 0

and n ≥ 1

[

n

1

]

= (n − 1)!. For

k ≥ 2,
[

n

k

]

=

[

n − 1

k − 1

]

+ (n + 1)

[

n − 1

k

]

.
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{

n
k

}

—Stirling number of the second kind

Combinatorial: The ways to distribute n people into k identical (nonempty)
rooms.

Computational: Recursively

{

n

0

}

=

{

1 n = 0
0 n 6= 0

and n ≥ 1

{

n

1

}

= 1. For k ≥ 2,

{

n

k

}

=

{

n − 1

k − 1

}

+ k

{

n − 1

k

}

.

fn—the nth Fibonacci number

Combinatorial: The ways to tile a 1 × n board using 1 × 1 squares and 1 × 2
dominoes.

Computational: f0 = 1, f1 = 1, and for n ≥ 2 fn = fn−1 + fn−2.

or fn =
1√
5



φn+1 −
(

−1

φ

)n+1




where φ = 1+
√

5
2

.

WARNING: You might be used to the Fibonacci numbers defined in the more
traditional way F0 = 0, F1 = 1, and for n ≥ 2 Fn = Fn−1 + Fn−2.

Ln—the nth Lucas number

Combinatorial: The ways to tile a circular 1×n board using 1×1 “squares” and
1 × 2 “dominoes”.

Computational: L0 = 2, L1 = 1, and for n ≥ 2 Ln = Ln−1 + Ln−2.

or Ln = φn +

(

−1

φ

)n

.

Gn—the nth Gibonacci number

Combinatorial: The ways to tile a 1 × n board using 1 × 1 squares and 1 × 2
dominoes where the first tile is distinguished. There are G1 choices for a leading
square and G0 choices for a leading domino.

Computational: G0 and G1 are given and for n ≥ 2 Gn = Gn−1 + Gn−2.

or Gn = αφn + β

(

−1

φ

)n

where α = (G1 + G0/φ)/
√

5 and β = (φG0 − G1)/
√

5.
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Dn—the nth Derangement number

Combinatorial: The ways to arrange 1, 2, . . . , n in a line so that no number lies
in its natural position.

Computational: Dn = n!
(

1 − 1

1!
+

1

2!
− 1

3!
+ · · · + (−1)n 1

n!

)

.

Cn—the nth Catalan number

Combinatorial: The number of lattice paths from (0, 0) to (n, n) using “right”
and “up” edges and staying below the line y = x.

Computational: Cn =
1

n + 1

(

2n

n

)

[a0, a1, . . . , an]—the finite continued fraction

a0 +
1

a1 + 1

a2 + 1
. . . + 1

an

=
pn

qn

Combinatorial:

Numerator: The ways to tile a 1×n+1 board using squares and dominoes where
cell i can contain half a domino or as many as ai squares, 0 ≤ i ≤ n.

Denominator: The ways to tile a 1× n board using squares and dominoes where
cell i can contain half a domino or as many as ai squares, 1 ≤ i ≤ n.

Computational: Attack with algebra to rationalize the complex fraction.

det(A)—the determinant of the n × n matrix A = {aij}.

Combinatorial: The signed sum of nonintersecting n-routes in a directed graph
with n origins, n destinations, and aij directed paths from origin i to destination
j.

Computational: det(A) =
∑

σ∈Sn

sign(σ)a1σ(1)a2σ(2) · · · anσ(n).

Example: det







1 2 5
5 8 21
0 1 2






= 1·8·2+2·21·0+5·5·1−0·8·5−5·2·2−1·1·21 = 0.
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1.2 Counting Technique 1: Ask a Question and Answer Two Ways

We will use one of two techniques to count an identity. The first poses a question and then
answers it in two different ways. One answer is the left side of the identity; the other answer
is the right side. Since both answers solve the same counting question, they must be equal.

Identity 1 For n ≥ 1,
n−1
∑

k=1

k · k! = n! − 1.

Question: The number of ways to arrange 1, 2, 3, . . . , n except for

Answer 1:

Answer 2:

Identity 2 For k, n ≥ 0,
((

n

k

))

=

(

n + k − 1

k

)

Question: How many ways can we allocate k votes to n candidates?

Answer 1:

Answer 2:
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1.3 Counting Technique 2: Description-Involution-Exception (DIE)

The second technique is to create two sets, count their sizes, and find a correspondence
between them. The correspondence could be one-to-one, many-to-one, almost one-to-one, or
almost many-to-one.

Identity 3 For k, n ≥ 0,
((

n

k

))

=

(

n + k − 1

k

)

Description:

Set 1:

Set 2:

Involution:

Exception:

Identity 4 For n ≥ 0,
n
∑

k=0

(−1)k

(

n

k

)

= 0.

Description:

Set 1:

Set 2:

Involution:

Exception:

What happens is we change the upper index of the summation to something smaller than n? larger than n?

7



2 Binomial Identities

2.1 Working Together

Let’s use these techniques to prove some identities.

Identity 5 For 0 ≤ k ≤ n

n! =

(

n

k

)

k!(n − k)!

Identity 6 The Binomial Theorem. For n ≥ 0,

(x + y)n =

(

n

0

)

xny0 +

(

n

1

)

xn−1y1 +

(

n

2

)

xn−2y2 + · · · +
(

n

n

)

x0yn.

Identity 7 For n ≥ 0
n
∑

k=0

(

n

k

)2

=

(

2n

n

)

.
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2.2 On Your Own

Identity 8 For 0 ≤ k ≤ n, (except n = k = 0),
(

n

k

)

=

(

n − 1

k

)

+

(

n − 1

k − 1

)

.

The technique above can be modified to prove:

Identity 9 For n ≥ 0, k ≥ 0, (except n = k = 0),

((

n

k

))

=

((

n

k − 1

))

+

((

n − 1

k

))

.

Identity 10 For n ≥ k ≥ 1,

[

n

k

]

=

[

n − 1

k − 1

]

+ (n − 1)

[

n − 1

k

]

.

Identity 11 For n ≥ k ≥ 1,

{

n

k

}

=

{

n − 1

k − 1

}

+ k

{

n − 1

k

}

.

Identity 12 For n ≥ 1,
n
∑

k=0

(

n

k

)

= 2n.

Identity 13 For n ≥ 1,
n
∑

k=0

k

(

n

k

)

= n2n−1.

Identity 14 For n ≥ q ≥ 0,
n
∑

k=q

(

n

k

)(

k

q

)

= 2n−q

(

n

q

)

Identity 15 For n ≥ m, k ≥ 0,

∑

j

(

m

j

)(

n − m

k − j

)

=

(

n

k

)

.

Identity 16 For n ≥ k ≥ j ≥ 0,

∑

m

(

m

j

)(

n − m

k − j

)

=

(

n + 1

k + 1

)

Identity 17 For nonnegative integers k1, k2, . . . , kn, let N =
∑n

i=1

(

ki

2

)

. Then

∑

1≤i<j≤n

(

ki

2

)(

kj

2

)

+ 3
∑

i=1

n

(

ki + 1

4

)

=

(

N

2

)

.
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2.3 What’s the Parity of
(

n
k

)

?

Pascal’s Triangle
1

1 1
1 2 1

1 3 3 1
1 4 6 4 1

1 5 10 10 5 1
1 6 15 20 15 6 1

1 7 21 35 35 21 7 1
1 8 28 56 70 56 28 8 1

1 9 36 84 126 126 84 36 9 1
1 10 45 120 210 252 210 120 45 10 1

1 11 55 165 330 462 462 330 165 55 11 1

Serpinski-like Triangle
1

1 1
1 0 1

1 1 1 1
1 0 0 0 1

1 1 0 0 1 1
1 0 1 0 1 0 1

1 1 1 1 1 1 1 1
1 0 0 0 0 0 0 0 1

1 1 0 0 0 0 0 0 1 1
1 0 1 0 0 0 0 0 1 0 1

1 1 1 1 0 0 0 0 1 1 1 1

Theorem 1 For n ≥ 0, the number of odd integers in the nth row of Pascal’s triangle is
equal to 2b where b =the number of 1s in the binary expansion of n.

Question. How many odd numbers occur in the 76th row of Pascal’s triangle?

Lemma.The parity of
(

n
k

)

will be the same as the parity of the number of palindromic
sequences with k ones and n − k zeros.

Description. Binary sequences with k ones and n − k zeros.

Involution.

Exception.

Ans: 76 = (1001100)2. Eight odd numbers.
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Count palindromic sequences with k ones and n − k zeros.
(

even
odd

)

(

even
even

)

(

odd
even

)

(

odd
odd

)

Consequence. If n is even and k is odd, then
(

n
k

)

is even, otherwise,
(

n
k

)

has the same

parity as
(

bn/2c
bk/2c

)

where we round n/2 and k/2 down to the nearest integer, if necessary.

Examples. Compute the parity:
(

76

15

) (

76

36

) (

76

12

)

Think binary!
(

(1001100)2
(0001111)2

) (

(1001100)2
(0100100)2

) (

(1001100)2
(0001100)2

)
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Only way to have an odd number is if the 1s in the binary representation of k are directly
below 1s in binary representation of n.

It tells us exactly which numbers produce odd binomial coefficients:

binary representation k
1001100 76
1001000 72
1000100 68
1000000 64
0001100 12
0001000 8
0000100 4
0000000 0

Extension. There a similar procedure to determine the remainder of
(

n
k

)

when divided by
any prime p?

Lucas’ Theorem. For any prime p, we can determine the remainder of
(

n
k

)

when divided
by p from the base p expansions of n and k. If

n = btp
t + bt−1b

t−1 + · · · + b1p
1 + b0

k = ctp
t + ct−1b

t−1 + · · · + c1p
1 + c0

then
(

n
k

)

and
(

bt

ct

)(

bt−1

ct−1

)

· · ·
(

b1
c1

)(

b0
c0

)

have the same remainder when divided by p.

Example. Calculate the remainder of

(

97

35

)

when divided by 5.

Ans:
(

97

35

)

≡
(

3

1

)(

4

2

)(

2

0

)

≡ 3 mod 5
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3 Fibonacci Identities

3.1 Tiling with Squares and Dominoes

Definition. Let fn count the ways to tile a 1 × n board using 1 × 1 squares and 1 × 2
dominoes.

Questions to explore.

1. Compute f4, f5, and f6.

2. Of the square-domino tilings of the 1 × 6 board, how many are breakable after the
second cell? How many have a single domino covering cells two and three?

3. For a board of length n (henceforth called an n-board),

(a) how many start with a square?

(b) how many start with a domino?

(c) how many use exactly k dominoes (and what values make sense for k?)

4. What should f0 be? What should f−1 be?

13



3.2 Working Together

Identity 18 For n ≥ 0,

(

n

0

)

+

(

n − 1

1

)

+

(

n − 2

2

)

+ · · · = fn.

Identity 19 For n ≥ 0,
f2

n−1 + f2
n = f2n

Identity 20 For n ≥ 0,
n
∑

k=0

f2
k = fnfn+1.

Identity 21 For n ≥ 2,
3fn = fn+2 + fn−2.
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3.3 On Your Own

Identity 22 For n ≥ 0
f0 + f1 + f2 + · · · + fn = fn+2 − 1.

Identity 23 For n ≥ 0,
f0 + f2 + f4 + · · · + f2n = f2n+1.

Identity 24 For n ≥ 0,
f2

n − fn+1fn−1 = (−1)n

Identity 25 For n ≥ 2,
2fn = fn+1 + fn−2.

Identity 26 For n ≥ 0,
∑

i≥0

∑

j≥0

(

n − i

j

)(

n − j

i

)

= f2n+1.

Identity 27 For n ≥ 0,
n
∑

k=0

kfn−k = fn+3 − (n + 3)

Identity 28 For n ≥ 0,

f2n−1 =
∑

k≥0

(

n

k

)

fk−1.

Identity 29 For n ≥ 0,

2nf2n−1 =
∑

k≥0

(

n

k

)

f3k−1.

Identity 30 If m|n, then fm−1|fn−1 (i.e. Fm|Fn)

Hint: If n = qm, count (n− 1)-tilings by considering the smallest value j such that
the tiling is breakable at cell jm − 1. (Why must such a cell exist?)

15



3.4 Combinatorial Proof of Binet’s Formula

Is it possible to construct a combinatorial proof of identities involving irrational quantities?
For example, using the standard Fibonacci Society definition F0 = 0, F1 = 1, and Fn =
Fn−1 + Fn−2, we have Binet’s classic formula

Fn =
1√
5

[(

1 +
√

5

2

)n

−
(

1 −
√

5

2

)n]

.

A combinatorial proof is possible if we introduce probability. Let φ = 1+
√

5
2

.

FACTS:

•
(

1−
√

5
2

)

= −1/φ.

• 1
φ

+ 1
φ2 = 1.

• Equivalent identity (since Fn = fn−1).

fn =
1√
5



φn+1 −
(

−1

φ

)n+1


 .

Tile an infinite board by independently placing squares and dominoes, one after the other.
At each decision, place a square with probability 1/φ or a domino with probability 1/φ2.
The probability that a tiling begins with any particular length n sequence is 1/φn. Let qn

be the probability that an infinite tiling is breakable at cell n.

qn = (1)

Question. What is the probability that an infinite tiling is breakable at cell n?

Answer 1. qn

Answer 2. One minus the probability that it is not breakable at cell n.

Remember q0 = 1.
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Unravel the recurrence in (1) to get

qn = 1 − 1

φ2
+

1

φ4
− 1

φ6
+ · · · +

(

−1

φ2

)n

.

Sum the geometric series.

Thus fn = φnqn =

17



4 Generalizations—Lucas, Gibonacci, and Linear Re-

currences

4.1 Motivating Generalization

Revisit Identity 28. For n ≥ 0,

f2n−1 =
∑

k≥0

(

n

k

)

fk−1.

Question: How many (2n − 1)-tilings?

Answer 1: f2n−1

Answer 2: Let k be the number of squares among the first n tiles.

Was the −1 really necessary in f2n−1 or fk−1 to make this argument fly?

Identity 31 For n ≥ 0, p ≥ −1,

f2n+p =
∑

k≥0

(

n

k

)

fk+p.

Identity seems independent of “initial conditions”. Why not consider a general Fibonacci
sequence (a.k.a. Gibonacci sequence)?

Definition. Let G0 and G1 be specified and for n ≥ 2 define Gn = Gn−1 + Gn−2.

The first few terms in a Gibonacci sequence are
G0, G1,

18



4.2 Weighting the Tilings

To transform the square-domino tilings of an n-board that give us the Fibonacci number fn,
to a Gibonacci number Gn we weight the tiling as follows:

weight assigned to tiling ending in a square: G1

weight assigned to tiling ending in a domino: G0

Let wn equal the sum of the weights of the length n-tilings.
Questions to explore.

1. Compute w1, w2, and w3.

2. For a board of length n (henceforth called an n-board),

(a) what is the total weight attributable to tilings that start with a square?

(b) what is the total weight attributable to tilings that start with a domino?

3. What should w0 be?

So wn = Gn for n ≥ 0.

Combinatorial Interpretation. For a Gibonacci sequence G0, G1, G2, . . ., the Gibonacci
number Gn is the total weight of all square-domino tilings of length n where tilings ending
withe a square have weight G1 and tilings ending with a domino have weight G0.
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4.3 Working Together

Identity 32 For m, n ≥ 0,

Gm+n = Gmfn + Gm−1fn−1.

Identity 33 For n ≥ 0,

G0 + G1 + G2 + · · · + Gn = Gn+2 −G1.

Identity 34 For n ≥ 1,

Gn+1Gn−1 − G2
n = (−1)n(G2

1 − G0G2).

Identity 35 For n ≥ 0,

G2n =
∑

k≥0

(

n

k

)

Gk.

Identity 36 For n ≥ 2,
Gn+2 + Gn−2 = 3Gn.
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4.4 On Your Own

Of special note is the Lucas sequence, the so-called companion sequence to the Fibonaccis.
Here L0 = 2, L1 = 1 and for n ≥ 2 Ln = Ln−1 + Ln−2. While weighted tilings work fine, we
could reinterpret Lucas numbers as circular tilings. (See Section 1.1.)

Identity 37 For n ≥ 1,
Gn = G0fn−2 + G1fn−1.

Identity 38 For n ≥ 0,

G1 +
n
∑

k=1

G2k = G2n+1.

Identity 39 For n ≥ 0,

G0G1 +
n
∑

k=1

G2
k = GnGn+1.

Identity 40 For n ≥ 0,
5fn = Ln + Ln+2

Identity 41 For n ≥ 0,
L2

n = L2n + (−1)n · 2.

Identity 42 Let G0, G1, G2, . . . and H0, H1, H2, . . . be Gibonacci sequences. Then for 0 ≤
m ≤ n,

GmHn − GnHm = (−1)m(G0Hn−m − Gn−mH0).

Identity 43 For n ≥ 0,

2nG2n =
∑

k≥0

(

n

k

)

G3k.
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4.5 Weighting Tiles Individually

For the Gibonacci numbers, we weighted the tiling based on the last tile used (G0 if it ended
in a domino and G1 if it ended in a square.) We have seen, that sometimes it was simpler
to think of the weight as being attached to the last tile itself. We could do this if the rest
of the board had “weight 1” and the weight obtained by concatenating two boards is the
product of the weights of its parts. This leads to the following idea:

Definition. The weight of a tiling T , denoted w(T ), is the product of the weight of the
individual tiles. The total weight for tilings of length n, denoted tn, is the sum of the weights
of all tilings of length n.

Example. Suppose we tiling n-boards with squares of weight s and dominoes of weight d.
Find t1, t2, t3, t4.

Can you find a recurrence to express tn?

What are the initial conditions for the situation described above?

For general linear recurrences of order 2

Combinatorial Interpretation. Let s, d, a0, a1 be given and for n ≥ 2, define

an = san−1 + dan−2.

For n ≥ 1, an is the total weight of length n-tilings created from weight s squares and weight
d dominoes except for the last tile, which may be a weight a1 square or a weight da0 domino.
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For the three identities below, we will assume ideal initial conditions: suppose a0 = 1, a1 = s
and for n ≥ 2, an = san−1 + tan−2.

Identity 44 For m, n ≥ 1,
am+n = aman + tam−1an−1.

Identity 45 For n ≥ 2,

an − 1 = (s − 1)an−1 + (s + t − 1)
n−1
∑

k=1

ak−1.

Identity 46 For any 1 ≤ c ≤ s, for n ≥ 0,

an − cn = (s − c)an−1 + ((s − c)c + t)
n−1
∑

k=1

ak−1c
n−1−k.
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4.6 A Gibonacci Magic Trick

Secretly write a positive integer in row 1
and another positive integer in row 2.

row integers
1
2
3
4
5
6
7
8
9
10

Next add those numbers together and put
the sum in row 3. Add row 2 and row 3
and place the answer in row 4. Continue
in this fashion until numbers are in rows
1 through 10. Now using a calculator, if
you wish, add all the numbers in rows 1
through 10 together.

While the volunteer is adding, the math-
emagician glances at the sheet of numbers
for just a second and instantly reveals the
sum. How?

Suppose G0 = x and G1 = y are our secret
numbers....

row integers
1 x
2 y
3
4
5
6
7
8
9
10

As a final flourish to the mathemagician’s performance he adds, “Now using a calculator,
divide the number in row 10 by the number in row 9 and announce the first three digits of
your answer. What’s that you say? 1.61? Now turn over the paper and look what I have
written.” The back of the paper says, “I predict the number 1.61.”
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Why does the ratio work?

For any two fractions a
b

< c
d

with positive numerators and denominators, it is
easy to show that

a

b
<

a + c

b + d
<

c

d
.

What are the implications of this for (row 10)/(row 9)?
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5 Continued Fractions

5.1 Introductions and Explorations

Definition. Given integers a0 ≥ 0, a1,≤ 1, a2 ≥ 1, . . . , an ≥ 1, define finite continued
fraction, denoted [a0, a1, . . . , an], to be the fraction in lowest terms for

a0 +
1

a1 +
1

a2 +
1

. . . +
1

an

Compute: [3, 4, 5, 2] and [2, 5, 4, 3]

Find finite continued fractions that represent 37/17 and 9/5.

Understanding Continued Fractions Through Algebra

Suppose [a0, a1, . . . , an] =
p(a0, a1, . . . , an)

q(a0, a1, . . . , an)
. Then

a0 +
1

a1 +
1

a2 +
1

. . . +
1

an

= a0 +
1

p(a1,...,an)
q(a1,...,an)

Initial conditions? p(a0) q(a0) p(a0, a1) q(a0, a1)
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This yields the following relations for the numerator and denominator of finite continued
fractions:

p(a0, a1, . . . , an) = a0p(a1, . . . , an) + p(a2, . . . , an)

q(a0, a1, . . . , an) = p(a1, . . . , an)

Counting Context
Let K(ai, ai+1, . . . , aj) be the total weight of the square-domino tilings of an 1×(j−i+1)-

board (with cell indexed from i to j) where dominoes have weight 1 and a square on cell k
has weight ak, i ≤ k ≤ j.

Compute K(3, 4, 5, 2).

Find a recurrence for K(a0, a1, a2, . . . , an) based on the first tile.

Initial conditions:

K(a0) =

K(a0, a1) =

Combinatorial Consequence. The finite partial fraction

[a0, a1, . . . , an] =
K(a0, a1, . . . , an)

K(a1, . . . , an)
.
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5.2 Working Together

Theorem 2 Reversing the entries in a finite continued fraction does not change the value
of the numerator.

Definition. An infinite continued fraction [a0, a1, a2, . . .] = limn→∞[a0, a1, . . . , an]. The finite
approximation [a0, a1, . . . , an] = rn = pn

qn

is called a convergent of the continued fraction.

Identity 47 The difference between consecutive convergents of [a0, a1, . . .] is:

rn − rn−1 =
(−1)n−1

qnqn−1
.

Equivalently, after multiplying both sides by qnqn−1, we have

pnqn−1 − pn−1qn = (−1)n−1.

One consequence is that pn/qn is in lowest terms since we have an integer combination of pn and qn that

equals ±1.
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Identity 48 The difference between every other convergent of [a0, a1, . . .] is:

rn − rn−2 =
(−1)nan

qnqn−2
.

Equivalently, after multiplying both sides by qnqn−2, we have

pnqn−2 − pn−2qn = (−1)nan.

How can you use the last two identities to see that infinite continued fractions always converge (and to an

irrational number at that!)

Identity 49 [a0, a1, . . . , an−1, 1] = [a0, a1, . . . , an−1 + 1]
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5.3 On Your Own

Prove the following by direct combinatorial argument.

Identity 50 For n ≥ 0, [a0, a1, . . . , an] = [1, 1, . . . , 1] = fn+1

fn

Identity 51 For n ≥ 0, [a0, a1, a2, . . . , an] = [3, 1, 1, . . . , 1] = Ln+2/fn.

Identity 52 For n ≥ 1, let [a0, a1, a2, . . . , an] = [1, 1, . . . , 1, 3] = Ln+2/Ln+1.

Identity 53 For n ≥ 1, let [a0, a1, a2, . . . , an] = [4, 4, . . . , 4, 3] = f3n+3/f3n.

Identity 54 For n ≥ 1, let [a0, a1, a2, . . . , an] = [4, 4, . . . , 4, 4] = f3n+5/f3n+2.

Problem. Use Identities 47 and 48 to show that infinite continued fractions are well defined
(i.e. the defining limit actually exists).

Problem. If an infinite continued fraction [a0, a1, . . .] converges to r, can you show that r
must be irrational?

Hint: Show that 0 < |r − pn

qn

| < 1
q2
n

. Then assume that r is rational to arrive at a
contradiction.
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5.4 Primes of form 4m + 1

Theorem 3 Any prime of the form 4m + 1 can be (uniquely) written as the sum of the
squares of two positive integers.

Examples. Write 5, 13, and 17 as the sum of two squares of two positive integers.

Proof. Suppose that p = 4m +1 is prime and consider the continued fraction expansions of

p

1
,
p

2
, · · · , p

2m
.
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6 Alternating Sums

6.1 Working Together

Alternating sums (or sums where the sign of the summand alternates between positive and
negative), are almost exclusively counted using the D.I.E. Method. The goal is to describe
two sets—one that is created from the positive “stuff” and the second from the negative
“stuff”, combinatorially interpret the quantity that changes sign, pair of positive and negative
“stuff”, and count the exceptions. The first example of this technique was proving Identity
4 and its generalization

Identity 55 Generalization of Identity 4. For m ≥ 0 and n > 0

m
∑

k=0

(−1)k

(

n

k

)

= (−1)m

(

n − 1

m

)

.

.

Identity 56 For n ≥ 0,
n
∑

k=0

(−1)kfk = 1 + (−1)nfn−1.

Note f−1 = 0.

Interpret Quantity. fk

Set P .

Set N .

Correspondence.

Exceptions.

Can you figure out the Gibonacci version of this identity?
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Identity 57 For n ≥ 2,
n
∑

k=0

(−1)kk

(

n

k

)

= 0.

Interpret Quantity. k
(

n
k

)

Set P .

Set N .

Correspondence.

Exceptions.

Identity 58

Dn =
n
∑

k=0

(−1)k n!

k!

Interpret Quantity. n!
k!

Set P .

Set N .

Correspondence.

Exceptions.
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6.2 On Your Own

Identity 59 For 0 ≤ m < n,

n
∑

k=0

(

n

k

)(

k

m

)

(−1)k = 0.

Identity 60 For n ≥ 0,
∑

k≥0

(−1)k

(

n − k

k

)

=











1 if n ≡ 0 or 1(mod 6)
0 if n ≡ 2 or 5(mod 6)

−1 if n ≡ 3 or 4(mod 6)

Identity 61 For n ≥ 0,
∑

k≥0

(−1)k

(

n − k

k

)

2n−2k = n + 1.

Identity 62
∑

k≥0

(−1)k

(

n − k

k

)

(xy)k(x + y)n−2k =
∑

j≥0

xn−jyj

Identity 63 For n ≥ 0,
n
∑

k=0

(−1)kf2k = (−1)nf2
n.

Identity 64 For n ≥ 3,

n
∑

i=0

(−1)iifi = (−1)n(nfn−1 + fn−3) + 1

Identity 65 For 0 ≤ k ≤ n

n
∑

i=0

(−1)i

(

n

i

)

(n − i)k = n! · δk,n
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6.3 Extend and Generalize by Playing with Parameters

Identity 66
n
∑

r=0

(−1)r

(

n

r

)(

2n − 2r

n − 1

)

= 0.

Interpret Quantity.
(

n
r

)(

2n−2r
n−1

)

Set P.

Set N.

Correspondence.

Exceptions.

Questions to consider for generalizations

• What role does n − 1 play in
(

2n−2r
n−1

)

?

• What can you say if you replace n − 1 with an arbitrary m < n?

• What can you say if you replace n − 1 with an arbitrary m > n?

• Rather than considering n pairs, what is we painted n triples? quadruples? k-tuples?

• Does the summation have to go all the way from r = 0 to r = n? Can we compute a
partial sum...say to some fixed s < n?
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Identity 67 For 0 ≤ m < n,

n
∑

r=0

(−1)r

(

n

r

)(

2n − 2r

m

)

= 0.

Identity 68 For n, m ≥ 0,

n
∑

r=0

(−1)r

(

n

r

)(

2n − 2r

m

)

= 22n−m

(

n

m − n

)

.

Identity 69 For 0 ≤ m < n and k ≥ 1,

n
∑

r=0

(−1)r

(

n

r

)(

kn − kr

m

)

= 0.

Identity 70
n
∑

r=0

(−1)r

(

n

r

)(

kn − kr

n

)

= kn.

Identity 71
n
∑

r=0

(−1)r

(

n

r

)(

kn − kr

n + 1

)

= nkn−1

(

k

2

)

.

Identity 72 For 0 ≤ m < s ≤ n,

s
∑

r=0

(−1)r

(

s

r

)(

2n − 2r

m

)

= 0.

Identity 73 For 0 ≤ s ≤ n,

s
∑

r=0

(−1)r

(

s

r

)(

2n − 2r

s

)

= 2s.
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6.4 Beyond DIE—a.k.a. “What happens after you DIE?”

This identity requires the twist of iterated involutions.

Identity 74
n
∑

j=1

n
∑

k=1

(−1)j+k

(

n − 1

j − 1

)(

n − 1

k − 1

)(

j + k

j

)

= 2.

Interpret Quantity.
(

n−1
j−1

)(

n−1
k−1

)(

j+k
j

)

Set P.

Set N.

Correspondence.

In the preceding analysis, elements 1 and n+1 represented the guaranteed members of X and Y respectively.
There is no reason to believe we are restricted to specifying only one member of each set. Why not two?
three? Why not specify a members of X and b members of Y ? Originally, X and Y were selected from
disjoint sets of size n. Did they have to be the same size? Why not choose X from an n-set and Y from an
m-set? With very little additional effort, you can modify the above description, involutions, and exceptions
to obtain the following generalization:

Identity 75
n
∑

j=a

m
∑

k=b

(−1)j+k

(

n − a

j − a

)(

m − b

k − b

)(

j + k

j

)

=

(

a + b

n − m + b

)

.
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6.5 Binet Revisited

You are now prepared for one last attack of Binet’s formula through finite weighted colored
tilings. If φ = 1+

√
5

2
, then φ = 1−

√
5

2
and Binet’s formula can be expressed as

fn =
1√
5
(φn+1 − φ

n+1
).

Definition. Let Bn be the total weight of a square domino tiling of a 1 × n board where
weights of tiles are assigned as follows:

tile type tile location weight assigned
domino anywhere 1

white square any cell ≥ 2 φ

white square cell 1
φ2

√
5

black square any cell ≥ 2 φ

black square cell 1
−φ

2

√
5

Compute B0, B1, B2

For n ≥ 2, find a recurrence for Bn based on the weight of the last tile.

So Bn = fn.
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“Involution” Gather tilings that add to zero:

Exceptions

7 Determinants

Calculate the following determinants:

∣

∣

∣

∣

∣

1 1
10 11

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

1 2 5
5 8 21
0 1 2

∣

∣

∣

∣

∣

∣

∣

=

In general
∣

∣

∣

∣

∣

a11 a12

a21 a22

∣

∣

∣

∣

∣

= a11a22 − a12a21

∣

∣

∣

∣

∣

∣

∣

a11 a12 a13

a21 a22 a23

a31 a32 a33

∣

∣

∣

∣

∣

∣

∣

=

What about
∣

∣

∣

∣

∣

∣

∣

∣

∣

a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44

∣

∣

∣

∣

∣

∣

∣

∣

∣

=
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7.1 The Big Formula

The determinant of an n × n matrix A = {aij} is

det(A) =
∑

σ∈Sn

sign(σ)a1σ(1)a2σ(2) · · · anσ(n).

A permutation σ of Sn is an arrangement of [n] (there are n! of these). In terms of a matrix,
it corresponds to an n× n matrix of 1s and 0s where there is exactly one 1 in each row and
column.

Example. Find the 6 × 6 matrices corresponding to the following permutations.

123456 145236 534621

The sign(σ) is ±1 depending on parity of the number of row exchanges (transpositions)
needed to transform it to the identity. (Even → +1; Odd → −1.)

Permutations of S3 For each permutation matrix below determine the corresponding per-
mutation of [3] and the sign of the permutation.







1 0 0
0 1 0
0 0 1













1 0 0
0 0 1
0 1 0













0 1 0
1 0 0
0 0 1













0 1 0
0 0 1
1 0 0













0 0 1
1 0 0
0 1 0













0 0 1
0 1 0
1 0 0
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Check your Understanding. Use the big formula to compute

det(A) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

2 5 14 23
1 3 9 15
0 1 4 7
0 0 1 2

∣

∣

∣

∣

∣

∣

∣

∣

∣

=

This is a nice answer. Our goal will be to “see” why.

7.2 Matrices from Determined Ants

Given a directed graph with n origins (the ants) and n destinations (the food)

create a matrix A where entry aij represents the number of paths for ant i to get to food j.

A =

1

2

3

4



































14 23

9 15



































.
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7.3 Determinants are Really Alternating Sums

If A is an n × n matrix, then

det(A) =
∑

σ∈Sn

sign(σ)a1σ(1)a2σ(2) · · · anσ(n).

Interpret Quantity. a1σ(1)a2σ(2) · · · anσ(n).

n-routes in a directed graph

Set P.

Set N.

Correspondence.

So the determinant is the signed sum of nonintersecting n-routes.

Revisit our original determinants. Can we create meaningful directed graphs to enable
our calculation of the determinants?

∣

∣

∣

∣

∣

∣

∣

∣

∣

2 5 14 23
1 3 9 15
0 1 4 7
0 0 1 2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 1
10 11

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 2 5
5 8 21
0 1 2

∣

∣

∣

∣

∣

∣

∣
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7.4 Working Together

det































(

0
0

) (

1
0

) (

2
0

) (

3
0

)

(

1
1

) (

2
1

) (

3
1

) (

4
1

)

(

2
2

) (

3
2

) (

4
2

) (

5
2

)

(

3
3

) (

4
3

) (

5
3

) (

6
3

)































= 1 det































(

n
0

) (

n+1
0

) (

n+2
0

) (

n+3
0

)

(

n+1
1

) (

n+2
1

) (

n+3
1

) (

n+4
1

)

(

n+2
2

) (

n+3
2

) (

n+4
2

) (

n+5
2

)

(

n+3
3

) (

n+4
3

) (

n+5
3

) (

n+6
3

)































= 1.

det











































(

n
0

) (

n+1
0

) (

n+2
0

)

· · ·
(

n+k
0

)

(

n+1
1

) (

n+2
1

) (

n+3
1

)

· · ·
(

n+k+1
1

)

(

n+2
2

) (

n+3
2

) (

n+4
2

)

· · ·
(

n+k+2
2

)

...
...

...
. . .

...

(

n+k
k

) (

n+k+1
k

) (

n+k+2
k

)

· · ·
(

n+2k
k

)











































= 1

det



























2 1 0 0 . . . 0
1 2 1 0 . . . 0

0 1 2 1
. . . 0

...
. . .

. . .
. . .

. . . 0
...

...
. . . 1 2 1

0 . . . . . . 0 1 2



























= n + 1 det

[

fm−1 fm

fm fm+1

]

= (−1)m+1.

Assume matrix is n × n.
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7.5 On Your Own

1. det

[

fm−r fm+s−r

fm fm+s

]

= (−1)m−rfr−1fs−1.

2. det







fm fm+p fm+q

fm+r fm+p+r fm+q+r

fm+s fm+p+s fm+q+s






= 0.

3. det

[

Gm−1 Gm

Gm Gm+1

]

= (−1)m−1(G0G2 −G2
1).

4. For j ≥ 1, det



























j 1 0 0 . . . 0
1 j 1 0 . . . 0

0 1 j 1
. . . 0

...
. . .

. . .
. . .

. . . 0
...

...
. . . 1 j 1

0 . . . . . . 0 1 j



























= An

where A0 = 1, A1 = j, and for n ≥ 2, An = jAn−1 − An−2. Note this also equals the

alternating sum
∑n

k=0(−1)k
(

n−k
k

)

jn−2k.

5. The nth Catalan number Cn = 1
n+1

(

2n
n

)

counts the number of lattice paths from (0, 0)

to (n, n) using “right” and “up” edges and staying below the line y = x. If

M t
n =













Ct Ct+1 · · · Ct+n−1

Ct+1 Ct+2 · · · Ct+n
...

. . .
...

Ct+n−1 Ct+n · · · Ct+2n−2













,

show that det(M0
n) = 1, det(M1

n) = 1, and det(M2
n) = n + 1.

6. Define

St
n =













Ct + Ct+1 Ct+1 + Ct+2 . . . Ct+n−1 + Ct+n

Ct+1 + Ct+2 Ct+2 + Ct+3 . . . Ct+n + Ct+n+1
...

...
. . .

...
Ct+n−1 + Ct+n Ct+n + Ct+n+1 . . . Ct+2n−2 + Ct+2n−1













.

Show that det(S0
n) = f2n and det(S1

n) = f2n+1.
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7.6 Classic Properties of Determinants

Suppose that A, B are n × n matrices.

• The determinant changes sign when two rows are exchanged.

• If two rows of A are equal, then det(A) = 0.

• A matrix with a row of zeroes has determinant equal to 0.

• det(A) = det(AT ).

• det(A) det(B) = det(AB).

7.7 Vandermonde Determinant

Just as we generalized from counting tilings to summing weighted tilings, we can move from
counting (nonintersecting) n-routes to summing the weights of the n-routes — just weight
the edges of the directed graphs. You probably figured this out already when you tackled
some of the previous determinants. This time we will weight edges with indeterminants.

Theorem 4 The Vandermonde matrix, Vn = [xj−1
i ] for 1 ≤ i, j ≤ n, has the determinant

detVn =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 x1 x2
1 · · · xn−1

1

1 x2 x2
2 · · · xn−1

2

1 x3 x2
3 · · · xn−1

3
...

...
...

. . .
...

1 xn x2
n · · · xn−1

n

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

=
∏

1≤i<j≤n

(xj − xi).
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Getting a feel for the theorem. Compute

det











1 1 1 1
1 2 4 8
1 3 9 27
1 4 16 64











det

















1 1 1 1 1
1 2 4 8 16
1 3 9 27 81
1 4 16 64 256
1 5 25 125 625

















We will assign weights to the n × n integer lattice so that the total weight of the paths
between origin i and destination j coincide with the entry xj−1

i . Then we compute weight of
the nonintersecting n-route.

Concretely working with n = 4.

detV4 =

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 x1 x2
1 x3

1

1 x2 x2
2 x3

2

1 x3 x2
3 x3

3

1 xn x2
n x3

n

∣

∣

∣

∣

∣

∣

∣

∣

∣

= (x4 − x3)(x4 − x2)(x4 − x1)(x3 − x2)(x3 − x1)(x2 − x1).

Now extend this idea to an n × n matrix!
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